Project Management

THE MANAGERIAL PROCESS

Clifford F. Gray Eric W. Larson Third Edition

Chapter 9

Reducing Project Duration

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

PowerPoint Presentation by Charlie Cook

Rationale for Reducing Project Duration

- Time Is Money: Cost-Time Tradeoffs
 - -Reducing the time of a critical activity usually incurs additional direct costs.
 - Cost-time solutions focus on reducing (crashing) activities on the critical path to shorten overall duration of the project.
 - -Reasons for imposed project duration dates:
 - Customer requirements and contract commitments
 - Time-to-market pressures
 - Incentive contracts (bonuses for early completion)
 - Unforeseen delays
 - Overhead and goodwill costs
 - Pressure to move resources to other projects

Options for Accelerating Project Completion

- Adding Resources
- Outsourcing Project Work
- Scheduling Overtime
- Establishing a Core Project Team
- Do It Twice—Fast and Correctly

- Fast-Tracking
- Critical-Chain
- Reducing Project
 Scope
- Compromise Quality

Explanation of Project Costs

Project Indirect Costs

- -Costs that cannot be associated with any particular work package or project activity.
 - Supervision, administration, consultants, and interest
- -Costs that vary (increase) with time.
 - Reducing project time directly reduces indirect costs.

Direct Costs

- -Normal costs that can be assigned directly to a specific work package or project activity.
 - Labor, materials, equipment, and subcontractors
- -Crashing activities increases direct costs.

Reducing Project Duration to Reduce Project Cost

Identifying direct costs to reduce project time

Gather information about direct and indirect costs of specific project durations.

Search critical activities for lowest direct-cost activities to shorten project duration.

Compute total costs for specific durations and compare to benefits of reducing project time.

Project Cost—Duration Graph

FIGURE 9.1

Constructing a Project Cost—Duration Graph

- Find total direct costs for selected project durations.
- Find total indirect costs for selected project durations.
- Sum direct and indirect costs for these selected project durations.
- Compare additional cost alternatives for benefits.

Constructing a Project Cost—Duration Graph

- Determining Activities to Shorten
 - -Shorten the activities with the smallest increase in cost per unit of time.
 - -Assumptions:
 - The cost relationship is linear.
 - Normal time assumes low-cost, efficient methods to complete the activity.
 - Crash time represents a limit—the greatest time reduction possible under realistic conditions.
 - Slope represents a constant cost *per unit of time*.
 - All accelerations must occur within the normal and crash times.

Activity Graph

Cost—Duration Trade-off Example

	Immediate Predecessor		Direct	Maximum Crash Time	Slope		
Activity ID		Normal				Crash	
		Time	Cost	Time	Cost		
А	-	3	RM50	2	RM70	1	RM20
В	А	6	80	4	160	2	40
С	А	10	60	9	90	1	30
D	А	11	50	7	150	4	25
E	В	8	100	6	160	2	30
F	C,D	5	40	4	70	1	30
G	E,F	6	70	6	70	0	0
			RM450				

Indirect Activity, Unit Time	26	25	24	23	22	21	20
Indirect Activity Cost, RM	450	400	350	300	250	200	150

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Cost—Duration Trade-off Example

			Direct costs			
Activity	Slope	Maximum crash time	Nor	mal	Crash	
ID			Time	Cost	Time	Cost
А	\$20	1	3	\$50	2	\$70
В	40	2	6	80	4	160
С	30	1	10	60	9	90
D	25	4	11	50	7	150
Е	30	_2_	8	100	6	160
F	30	1	5	40	4	70
G	0	0	6	70	6	70

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

FIGURE 9.4 (cont'd)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

FIGURE 9.4 (cont'd)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

FIGURE 9.4 (cont'd)

Summary Costs by Duration

Project duration	Direct costs	+ Indirect costs	= Total costs
25	450	400	\$850
24	470	350	820
23	495	300	795
(22)	525	250	(775)
21	610	200	810

FIGURE 9.5

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Project Cost—Duration Graph

FIGURE 9.6

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Practical Considerations

- Using the Project Cost—Duration Graph
- Crash Times
- Linearity Assumption
- Choice of Activities to Crash Revisited
- Time Reduction Decisions and Sensitivity

What if Cost, Not Time is the Issue?

- Commonly Used Options for Cutting Costs
 - -Reduce project scope
 - -Have owner take on more responsibility
 - -Outsourcing project activities or even the entire project
 - -Brainstorming cost savings options

Key Terms

- **Crash point**
- Crash time
- **Direct costs**
- **Fast-tracking**
- Indirect costs
- Outsourcing
- **Phase project delivery**
- **Project cost-duration graph**