Separation and Purification Technology
Volume 163, 11 May 2016, Pages 300-309, ISSN: 13835866
Vatanpour, V., Yekavalangi, M.E., Safarpour, M.
Abstract
A novel polyvinylidene fluoride (PVDF) ultrafiltration membrane blended with different concentrations of SAPO-34 nanoporous zeolite was fabricated by the non-solvent induced phase inversion method. The prepared blended membranes were characterized by scanning electron microscopy (SEM), water contact angle, porosity, energy dispersive X-ray (EDX), and permeation analyses as well as fouling and rejection tests. The SEM images of the membranes showed an asymmetric structure possessing a dense top-layer and a combination of spongy and finger-like porous sub-layer. The modified PVDF membranes had lower water contact angle, higher hydrophilicity and water flux due to the presence of hydrophilic SAPO-34 zeolite in the polymer medium. All of the nanocomposite membranes showed higher flux recovery ratio (FRR (%)) compared to the unfilled PVDF membrane. The membrane containing 0.5 wt% SAPO-34 had the best antifouling performance (FRR = 89.4%) with a bovine serum albumin (BSA) rejection value more than 99%. © 2016 Published by Elsevier B.V.
DOI: 10.1016/j.seppur.2016.03.011