Publications

For more updated lists of publications, you can visit my Google Scholar.

Pre-Prints

  1. Adam, T., Malyshev, A., Hassan, M. F., Mohamed, N. S., & Salam, M. S. H. (2023). Accelerated Proximal Iterative re-Weighted $\ell_1 $ Alternating Minimization for Image DeblurringarXiv preprint arXiv:2309.05204. (Codes)
  2. Adam, T. (2024). Manifold Quadratic Penalty Alternating Minimization for Sparse Principal Component Analysis. arXiv preprint arXiv:2411.06654.

Journal Papers

  1. Yin, M., Adam, T., Paramesran, R., Hassan, M. F. (2024). An ℓ0 total generalized variation for impulse noise removalMultimedia Tools and Applications.
  2. Hassan, M. F., Adam, T., Rajagopal, H., & Paramesran, R. (2022). A hue preserving uniform illumination image enhancement via triangle similarity criterion in HSI color spaceThe Visual Computer, 1-12.
  3. Hassan, M. F., Adam, T., Yin, M., & Paramesran, R. (2023). Effect of image denoising on geometric moments in image applicationsThe Journal of Analysis31(3), 1783-1803.
  4. Adam, T., Paramesran, R., & Ratnavelu, K. (2022). A combined higher order non-convex total variation with overlapping group sparsity for Poisson noise removalComputational and Applied Mathematics41(4), 1-33.
  5. Yin, M., Adam, T., Paramesran, R., & Hassan, M. F. (2022). An ℓ0-overlapping group sparse total variation for impulse noise image restorationSignal Processing: Image Communication102, 116620. (MATLAB Codes)
  6. Adam, T., Paramesran, R., Mingming, Y., & Ratnavelu, K. (2021). Combined higher order non-convex total variation with overlapping group sparsity for impulse noise removalMultimedia Tools and Applications80(12), 18503-18530.
  7. Adam, T., & Paramesran, R. (2020). Hybrid non-convex second-order total variation with applications to non-blind image deblurringSignal, Image and Video Processing14(1), 115-123.
  8. Adam, T., & Paramesran, R. (2019). Image denoising using combined higher order non-convex total variation with overlapping group sparsityMultidimensional Systems and Signal Processing30(1), 503-527.
  9. Adam, T. B., Salam, M. S., & Gunawan, T. S. (2013). Wavelet cesptral coefficients for isolated speech recognitionIndonesian Journal of Electrical Engineering and Computer Science11(5), 2731-2738.
  10. Adam, T. B., & Salam, M. (2012). Spoken english alphabet recognition with mel frequency cepstral coefficients and back propagation neural networksInternational Journal of Computer Applications42(12), 21-27.

Conference Papers

  1. Hassan, M. F., Adam, T., & Paramesran, R. (2023, June). Lightness enhancement method for low illumination night-time image. In AIP Conference Proceedings (Vol. 2756, No. 1). AIP Publishing.
  2. Adam, T., Hassan, M. F., & Paramesran, R. (2021, September). A Study on Staircase Artifacts in Total Variation Image Restoration. In 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 83-88). IEEE. (MATLAB Codes)
  3. Adam, T. B., Salam, M. S., & Gunawan, T. S. (2013, October). Wavelet based Cepstral Coefficients for neural network speech recognition. In 2013 IEEE International Conference on Signal and Image Processing Applications (pp. 447-451). IEEE.

Book Chapters

  1. Adam, T., Mohamed, N. S.,Hassan, M. F., & Paramesran, R. (2022). The alternating direction method of multipliers (ADMM) for large-scale convex optimization problems: Applications in image and signal processing. In Operations Research & Analytics in Practice: Theory, Methods & Applications . UTeM Press & MSORSM (Accepted).