Abstract
This study reports the removal of uranium in underground wastewater using a Nigerian clay-based membrane. The clay and sintered clay were characterized using XRD, XRF, TGA/DTA, FESEM and PSD. The raw clay was mixed with cassava starch (10, 15, 20 and 25 wt%) and sintered at a temperature of 1300 °C. A multi-point BET analysis of the produced clay-based membranes was conducted to determine the surface area, pore volume and average pore size. Sintering characteristics were determined by apparent porosity, bulk density and flexural strength. The radioactivity of the feed and the permeated water was counted using a gamma spectrometer with an HPGe detector. From the XRD, TGA and FESEM, 1300 °C was found to be optimum for the mullite formation from the clay. The average pore sizes of the produced membranes from the BET results were observed to be in the range from 51 to 70 Å and with a steady state flux range of the tested membranes in the range 1.92×10−5–2.09×10−4 m3 m−2 s−1. The permeation flux produced is of high quality with a rejection in the range of 1.78–2.56 Bq/l of the uranium activity by the tested membranes. This low-cost membrane will have an application for the treatment of uranium-containing wastewater from fracking, oil exploration and phosphate mining industries.
http://www.sciencedirect.com/science/article/pii/S0272884216002923