Biografi Ts. Dr. Mohd Fadhzir Ahmad Kamaroddin, Pegawai Penyelidik Kanan, Institute of Future Energy, Universiti Teknologi Malaysia

Biografi 

Ts. Dr. Mohd Fadhzir Ahmad Kamaroddin

Pegawai Penyelidik Kanan, Institute of Future Energy, Jabatan Timbalan Naib Canselor (Penyelidikan & Inovasi), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor.

https://people.utm.my/mfadhzir/

Ts. Dr. Mohd Fadhzir Ahmad Kamaroddin berasal dari Ayer Hitam, Batu Pahat, Johor dan dilahirkan pada 4 Disember 1983 di Hospital Batu Pahat, Batu Pahat, Johor.

Beliau memulakan alam persekolahan di Sekolah Kebangsaan Kota Dalam, Ayer Hitam sebelum ke Sekolah Menengah Kebangsaan Datuk Menteri, Ayer Hitam daripada Tingkatan 1 hingga 3.

Keputusan cemerlang semasa Peperiksaan Menengah Rendah (8A) membolehkan beliau diterima masuk ke Maktab Rendah Sains Mara Jasin, Melaka semasa di Tingkatan 4 hingga 5.

Selepas seminggu sahaja selepas menduduki peperiksaan Sijil Pelajaran Malaysia (SPM) pada tahun 2000, Dr. Mohd Fadhzir diterima masuk untuk mengikuti program UTM-MARA Ekspres selama 6 bulan di Universiti Teknologi Malaysia, Johor Bahru menggunakan keputusan yang diperolehi semasa ujian percubaan SPM.

Selepas tamat program tersebut, beliau terus ditawarkan kemasukan terus ke pengajian tahun 2 bagi program Ijazah Sarjana Muda Kejuruteraan Kimia (2001-2005).

Dr. Mohd Fadhzir memperolehi Ijazah Sarjana Muda Kejuruteraan Kimia dengan Kepujian (2nd Class upper) daripada Universiti Teknologi Malaysia pada tahun 2005.

Selepas itu, beliau bertugas sebagai jurutera proses di syarikat multinasional tempatan yang menghasilkan minyak bio daripada tandan kosong buah kelapa sawit dengan penglibatan kerjasama pakar bidang dari Belanda, Jepun, Jerman dan juga Korea. Proses yang terlibat dalam penghasilan minyak bio ini ialah proses pyrolysis yang beroperasi tanpa kehadiran gas oksigen atau pun udara persekitaran.

Pengalaman bekerja selama 2 tahun di dalam bidang penyelidikan dan pembangunan (R&D) serta minat yang mendalam mendorong beliau untuk memohon dan diterima kerja sebagai pegawai penyelidik (gred Q41) di Universiti Teknologi Malaysia pada tahun 2007.

Pada tahun 2011, beliau dianugerahkan Anugerah Perkhidmatan cemerlang (APC) oleh pihak pengurusan UTM. Pada tahun 2013, beliau dinaikkan pangkat kepada pegawai penyelidik (gred Q44) dan pada tahun 2014 pula, memperolehi Ijazah Sarjana Kejuruteraan Kimia dengan Kepujian daripada Universiti Teknologi Malaysia.

Beliau juga sekali lagi berjaya dianugerahkan Anugerah Perkhidmatan Cemerlang (APC) pada tahun 2014.

Hasil penglibatan beliau dalam penyelidikan dan pembangunan serta pelbagai jawatankuasa diperingkat universiti, beliau diberikan kepercayaan oleh universiti untuk menjawat jawatan dan dinaikkan pangkat kepada pegawai penyelidik kanan (gred Q48) pada tahun 2018 di Institute of Future Energy, Jabatan Timbalan Naib Canselor (Penyelidikan & Inovasi).

Pada tahun yang sama juga, beliau telah diiktiraf sebagai Teknologis Profesional (Ts.) oleh Lembaga Teknologis Malaysia (MBOT).

Dr. Mohd Fadhzir telah mempeorlehi Ijazah Doktor Falsafah (Kejuruteraan Kimia) daripada Universiti Putra Malaysia setelah diluluskan oleh Majlis Senat Universiti pada 8 September 2022 dalam bidang penghasilan gas hidrogen daripada elektrolisis suhu tinggi kuprum klorida dalam asid hidroklorik menggunakan membrane pertukaran proton hibrid / High-Temperature Electrolysis of Copper Chloride using Hybrid Proton Exchange Membrane for Hydrogen Production.

Sehingga kini, Dr. Mohd Fadhzir telah terlibat dengan lebih daripada 13 projek penyelidikan dan perundingan serta berjaya menerbitkan lebih 20 artikel (5 ISI Q1/Q2, 4 Scopus, 2 bab dalam buku, 6 kertas kerja persidangan, 2 permohonan paten dan lain-lain) di peringkat antarabangsa dan kebangsaan termasuklah juga penerbitan artikel di portal pendidikan online serta akhbar utama.

Selain itu, beliau juga telah menyemak lebih daripada 18 artikel jurnal berimpak tinggi melalui penglibatan sebagai reviewer bagi Journal of Cleaner Production (JCLPRO), International Journal of Hydrogen Energy (IJHE), International Journal of Energy Research (IJER) dan lain-lain lagi.

Dr. Mohd Fadhzir boleh dihubungi melalui LinkedIn https://www.linkedin.com/in/fadhzir/ dan hasil penyelidikan serta kajian beliau boleh dicapai melalui link berikut;

Scopus https://www.scopus.com/authid/detail.uri?authorId=26221132900

Web of Science https://www.webofscience.com/wos/author/record/A-1411-2010

ResearchGate https://www.researchgate.net/profile/Mohd-Fadhzir-Ahmad-Kamaroddin dan,

Google Scholar https://scholar.google.com/citations?user=tSB9eZAAAAAJ&hl=en

Constructive dialogue between the IFE researchers and the General Manager of the Sarawak Energy R&D Department and his team today (8th March 2022) via Microsoft Team Meetings.


Key researchers from the 
Institute of Future Energy, UTM

Prof. Dr. Aishah A. Jalil – Director of the Centre of Hydrogen Energy (CHE)
Assoc. Prof. Ir. Dr. Md Pauzi Abdullah – Director of the Centre of Electrical Energy Systems (CEES)
Ts. Dr. Sathiabama – Director of the UTM Ocean Thermal Energy Centre (UTM-OTEC)
Assoc. Prof. Ir. Dr. Mimi Haryani Hassim
Assoc. Prof. Dr. Anwar Johari
Assoc. Prof. Ts. Dr. Dalila Mat Said
Dr. Tuan Amran Tuan Abdullah
Dr. Umi Aisah Asli
Dr. Norafneeza Norazahar

Key researchers from the Sarawak Energy R&D team

Dr. Ng Sing Muk – General Manager R&D
Mr. Aaron Khin Chee Hwa
Ms. Pong Chun Hui
Mr. Gabriel
Mr. Fernand

No alternative text description for this image
No alternative text description for this image
No alternative text description for this image

#energy
#hydrogen
#electrolyzer
#fuelcell
#instituteoffutureenergy
#sarawakenergy
#UTM

Network visualization mapping for bibliometric analysis using VOSviewer for hydrogen research

No alternative text description for this image

Network visualization mapping for bibliometric analysis using VOSviewer for hydrogen research (keywords: hydrogen production, electrolysis & hybrid membrane)
#research #network #visualization #hydrogen #hydrogenproduction #electrolysis #hybridmembrane

Membranes Journal, Quartile 1 (Q1) with the impact factor (IF) of 4.106.

https://www.mdpi.com/2077-0375/11/11/810

Our review article on membrane-based electrolysis for hydrogen production has been published in the Membranes Journal, Quartile 1 (Q1) with the impact factor (IF) of 4.106.

The article reviews the alkaline electrolysis and 6 types of membrane-based electrolysis for hydrogen production and its current technological progress. 

The challenges and future trends were also discussed and concluded with the future developments of the cost-effective membranes for hydrogen production.

This review article is available online via open access https://lnkd.in/gNfJ84xa. Please download, share and cite the article if it is related to your research works.

https://www.mdpi.com/2077-0375/11/11/810

#membranes#electrolysis#membranebasedelectrolysis#hydrogen#hydrogenproduction#zerocarbonfootprint#watersplittingtechnologies#electrolyzer#electrolysistechnologies#research#futureenergy

Fukushima powers up one of the world’s biggest hydrogen plants

TOKYO — One of the world’s largest facilities for producing clean-burning hydrogen marked its opening on Saturday, in a demonstration of northeastern Japan’s revival from the devastating 2011 earthquake and tsunami.

Located in the town of Namie, just north of the ruined Fukushima Daiichi nuclear power plant, the solar-powered hydrogen station can produce enough gas to fill 560 fuel cell vehicles a day.

Prime Minister Shinzo Abe attended the opening ceremony for the government-backed project, which involves Toshiba, Tohoku Electric Power and natural gas distributor Iwatani.

For Abe’s government, the effort’s tie-in with the Olympic Games offers a high-profile chance to counter criticism of foot-dragging in the fight against climate change. Japan has taken heat for its reliance on coal-fired plants and its funding of them overseas.

#hydrogenenergy
#greenhydrogen

Source: Nikkei Asia

For details, please click the link below.

https://asia.nikkei.com/Business/Energy/Fukushima-powers-up-one-of-world-s-biggest-hydrogen-plants?fbclid=IwAR1CGjVxZZ10m9QUP9o0CtPyT3c6hEG_C4UwZx-VA8ntHcLwRgjyOMbXn3U

Giant Leap Towards a Hydrogen Society

“Achieving a hydrogen society requires promoting the total integration of the making, storing, and using hydrogen. A particularly critical issue is responding to fluctuations in electrical power when the hydrogen is made from renewable energy sources that vary according to the weather and other factors. FH2R uses information from a hydrogen demand-and-supply forecasting system for predicting the market demand for hydrogen, and additional data from a power grid control system, so as to maximize the use of electricity from renewable sources. The goal is to develop the most efficient hydrogen energy management system.


Source: https://www.japan.go.jp/…/2020/earlysummer2020/hydrogen.html

Green Ammonia as a fossil fuel replacement?

Source: https://energypost.eu/green-ammonia-can-replace-fossil-fuel-storage-at-scale/

Main points;

  1. Pure hydrogen is an energy dense alternative, but the gas takes up a lot of space. Liquid ammonia doesn’t, yet it contains the hydrogen and therefore the energy.
  2. While, the current energy system has a vast amount of storage built into it, the vast majority is in the form of hydrocarbon fuels such as natural gas, petrol, diesel or kerosene– also referred to as chemical energy vectors.
  3. Ideally, then, the search is on for a chemical energy vector that does not contain any carbon. Here, hydrogen is a great option as it has got the highest energy density by weight of any chemical fuel. The problem with hydrogen is that its volumetric energy density is low: it is difficult to get a lot of hydrogen in a small space. Fuel cell electric vehicles have a typical hydrogen inventory of 4 – 5 kg to give them a range of 300 miles, but need to compress this hydrogen to high pressure – typically 700 bars – to make the fuel tank small enough to fit in the car.
  4. One promising candidate for this role is ammonia; an ammonia molecule comprises one nitrogen atom and three hydrogen atoms (for comparison, a methane molecule has one carbon atom and four hydrogen atoms). Ammonia can be synthesised from raw materials that we have in abundance, namely water and air, using renewable energy.
  5. The Earth’s atmosphere is roughly 78 per cent nitrogen and this can readily be separated out from air. Hydrogen can be obtained from water, via a process called electrolysis. Once the hydrogen and nitrogen are produced, they can be combined in an industry-standard reaction called the Haber-Bosch process to produce ammonia. If renewable energy is used to power these processes, then that energy becomes locked up in the ammonia molecule, without any direct carbon emissions.
  6. For storing large quantities of energy, chemical fuels provide an energy-dense and convenient medium – it’s why they are ubiquitous today. The challenge with the fuels we use now is the carbon emissions that result from burning them. One way of thinking about ammonia is that it solves the conundrum of replacing hydrocarbon fuels with something that doesn’t contain any carbon, while also overcoming the challenges of storing and distributing hydrogen in bulk.

Research Projects & Consultancies (2007 – 2017)

RESEARCH PROJECTS (2007-2017)

  1. Physico-chemical Properties Studies of AgO/CuO Incorporated on Wrinkled Titania Nanoparticles for Enhanced Photocatalytic Activity (2015 – 2017), sponsored Under Fundamental Research Scheme Grant (FRGS), Ministry of Higher Education, Malaysia – Researcher
  2. Pyrolysis of Empty Fruit Bunch over Malaysia’s Minerals in a Batch Reactor for the Synthesis of Bio-Oil (2015-2016), sponsored under Research University Grant (Encouragement Grant), UTM – Project Leader
  3. Cheaper and More Durable Proton Exchange Membrane (2013 – 2016), sponsored under Long Term Research Grant, Ministry of Higher Education – Researcher
  4. Development of a High Temperature Aqueous CuCl/HCl and Solar PV Based Electrolyser for Hydrogen Production (2015-2016), sponsored under Research University Grant (Flagship), UTM – Researcher
  5. Carbon Dioxide Conversion to Fuels using Catalytic Micro channel Photoreactor(2014-2015), sponsored under Research University Grant, UTM – Researcher
  6. Flash Pyrolysis of Malaysian Switchgrass Imperata Cylindrica for the Production of Bio-Oil (2011-2013), sponsored under Research University Grant, UTM – Researcher
  7. Synthesis and Characterization of Catalyst for Crude Glycerol Conversion to Methanol (2010-2012), sponsored under Fundamental Research Scheme Grant (FRGS), Ministry of Higher Education, Malaysia – Researcher
  8. Feasibility Study of Plasma Reaction in Converting Flare Gas to Synthesis Gas and C2+Hydrocarbons (2008-2009), Exxon Mobil Grant – Researcher
  9. Product Characterization from Catalytic Liquefaction of Empty Palm Fruit Bunch (EPFB) in Near and Supercritical Water (2007-2009), sponsored under Fundamental Research Scheme (FRGS), Ministry of Higher Education, Malaysia – Researcher
  10. Low Temperature Catalytic Plasma Reactor for Conversion of Methane to Fuels (2007-2009), sponsored under e-science scheme (Esciencefund) by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia – Research Officer
  11. Development of Integrated Catalytic Process for the Production of Biofuels (2007- 2009), sponsored under e-science scheme (Esciencefund) by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia – Research Officer

CONSULTANCIES

  1. Research on Integrity Management and Deterioration Control on Ageing Plant in Oil & Gas, Chemical Processing & Electricity Generation Plant worth RM 1 million from Department of Occupational, Safety & Health, Ministry of Human Resources, Putrajaya (2016-2017)