I don’t want to talk, to communicate, with someone who agrees with me. I want to communicate with you because you see it differently.
Covey, 1990
Associate Prof. Dr. Musa Mohd Mokji
School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia
I don’t want to talk, to communicate, with someone who agrees with me. I want to communicate with you because you see it differently.
Covey, 1990
Kontroversi operasi darab 2×5 yang dikatakan tidak sama dengan 5×2 adalah kisah lama. Tetapi oleh kerana terjumpa semula dokumen berkaitan perkara ini, berikut ialah pendapat saya.
Kaedah KAH (Kumpulan, ahli dan Hasil) dipercayai dapat memudahkan pemahaman anak-anak untuk membina ayat matematik darab sekaligus melaksanakan operasi tersebut. Untuk membina ayat matematik, kaedah KAH memerlukan kita mengenalpasti kumpulan terlebih dahulu, kemudian jumlah ahli dalam setiap kumpulan dan akhirnya jumlah hasil darab. Kita mulakan dengan contoh pertama seperti di Gambarajah 1.
KUMPULAN boleh ditafsirkan sebagai kelompok objek yang mempunyai ciri yang sama. Merujuk kepada Gambarajah 1 di atas, ciri yang paling jelas dikongsi oleh peserta ialah nama PASUKAN di mana 5 peserta berada di Pasukan A dan 5 peserta berada di Pasukan B. Selain pasukan, kumpulan juga boleh dibina dari ciri JANTINA dan NEGERI. Untuk kumpulan Jantina, terdapat 5 peserta lelaki dan 5 peserta perempuan manakala untuk kumpulan Negeri, terdapat 2 peserta untuk setiap 5 negeri.
Oleh itu terdapat 3 KAH yang boleh dibina daripada gambarajah di atas iaitu:
KAH Pasukan: 2 x 5 = 10
2 kumpulan PASUKAN (A dan B). Setiap PASUKAN ada 5 ahli.
KAH Jantina: 2 x 5 = 10
2 kumpulan JANTINA (lelaki dan perempuan). Setiap JANTINA ada 5 ahli.
KAH Negeri: 5 x 2 = 10
5 kumpulan KUMPULAN (Selangor, Sabah, Sarawak, Pahang dan Perak). Setiap NEGERI ada 2 ahli.
Sekarang kita beralih kepada situasi kedua seperti yang tertera pada Gambarajah 2. Cuba perhatikan apakah jenis kumpulan yang boleh dikenalpasti.
Sekali lagi kumpulan yang paling ketara adalah PASUKAN di mana terdapat 2 pasukan iaitu A dan B. Melihat kepada contoh pada Gambarajah 1 sebelum ini, Gambarah 2 juga mempunyai kumpulan berdasarkan JANTINA. Tetapi kali ini terdapat hanya satu jantina sahaja iaitu lelaki. Ini berbeza dengan kumpulan NEGERI di mana ianya tidak wujud sama sekali untuk contoh pada Gambarajah 2.
Apa yang tidak dapat dilihat tetapi wujud daripada Gambarajah 2 adalah pernomboran kepada setiap ahli pasukan seperti yang ditunjukkan pada Gambarajah 3 di bawah. Pernomboran ini boleh wujud daripada nombor yang diberikan semasa mengisi nama ahli kumpulan atau nombor giliran menjawab soalan jika ianya adalah pertandingan kuiz antara 2 pasukan tersebut. Pernomboran ini juga boleh diistilahkan sebagai INDEX.
Oleh itu, INDEX juga merupakan sejenis kumpulan dimana terdapat 2 peserta untuk setiap 5 Index pasukan. Dan tidak mustahil jika setiap peserta tidak mengira pasukan diindex dengan nombor yang berlainan. Maka akan wujud satu ahli untuk 10 kumpulan INDEX.
Berikut adalah ayat matematik darab untuk contoh kali ini:
KAH Pasukan: 2 x 5 = 10
2 kumpulan PASUKAN (A dan B). Setiap PASUKAN ada 5 ahli.
KAH Jantina: 1 x 10 = 10
1 kumpulan JANTINA (lelaki). Setiap JANTINA ada 10 ahli.
KAH Index Pasukan: 5 x 2 = 10
5 kumpulan INDEX PASUKAN (1, 2, 3, 4 dan 5). Setiap INDEX PASUKAN ada 2 ahli.
KAH Index Peserta: 10 x 1 = 10
10 kumpulan INDEX PESERTA (1, 2, 3, 4, 5, 6, 7, 8, 9 dan 10). Setiap INDEX PESERTA ada 1 ahli.
Kesimpulannya, kesemua ayat matematik darab di atas boleh digunakan untuk contoh kali ini. Ini dibuktikan dengan jumlah hasil kesemua ayat matematik darab tersebut adalah sama iaitu 10.
Sebagai latihan, cuba kenalpasti jenis-jenis kumpulan dan bilangan ahli setiap kumpulan untuk gambar seterusnya (Gambarajah 4). Kemudian bina ayat matematik darab untuk mendapatkan jumlah keseluruhan brownies.
Cuba juga kenalpasti 2 lagi kumpulan untuk contoh pertama pada Gambarajah 1. Selamat mencuba.
Date: 29 July & 1 August 2019
Venue: Bilik Kuliah 1, N24
Part 2 focuses on formal CL. Three primary principals in designing the formal CL are:
Unfortunately, I was able to attend only the first of two days of the workshop, but still, I learned a lot of new knowledge.
After the informal CL workshop, I plan to do a concept mapping activity for the next DSP class. Above is one possible mapping of the entire content of the DSP SKEL4223 course. The main three keywords are filtering, analysis, and design. I also include important Matlab functions.
https://www.youtube.com/watch?v=gAbjktCnP8A
This is my second running event of 2019. Good running. I manage to finish in less than 30 minutes. Next event will be on September 2019
The focus of this workshop is on the informal CL. Implementing or designing the informal CL should usually involve three phases.
P/s: Thank you Dr. Suhana for the picture.