1. Abd Hamid NA, Shapiai MI, Batool U, Sarban Singh RS, Mohammed Amin MK, Elias KA. Incorporating attention mechanism in enhancing classification of alzheimers disease. Front Artif Intell Appl 2021;337:496-509.
2. Nasrualam FAH, Shapiai MI, Batool U, Ramli AK, Elias KA. Skeleton-based action recognition with joint coordinates as feature using neural oblivious decision ensembles. Front Artif Intell Appl 2021;337:380-392.
3. Utami, I.A.W., Fauzi, H., Fuadah, Y., Silaen, Y.S. & Shapiai, M.I. 2021, “The Design of Stroke EEG Channel Selection System Using Spatial Selection Method”, Proceedings – 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2021, pp. 58.
4. Kausar, A., Razzak, I., Shapiai, I. & Alshammari, R. 2021, “An Improved Dense V-Network for Fast and Precise Segmentation of Left Atrium”, Proceedings of the International Joint Conference on Neural Networks.
5. Ramadhani, A., Fauzi, H., Wijayanto, I., Rizal, A., & Shapiai, M. I. (2021). The implementation of EEG transfer learning method using integrated selection for motor imagery signal
6.Batool U, Shapiai MI, Ismail N, Fauzi H, Salleh S. 2020. Oversampling based on data augmentation in convolutional neural network for silicon wafer defect classification. Front Artif Intell Appl 2020;327:3-12.
7. Faris Ramli, M, Muniandy, K. Adam, AB Nasir, A.F and Ibrahim Shapiai, M., 2020. Indoor occupancy estimation using carbon dioxide concentration and neural network with random weights, IOP Conference Series: Materials Science and Engineering 2020.
8. Batool, U., Shapiai, M.I., Fauzi, H., and Fong, J.X., 2020. Convolutional Neural Network for Imbalanced Data Classification of Silicon Wafer Defects, Proceedings – 2020 16th IEEE International Colloquium on Signal Processing and its Applications, CSPA 2020 2020, pp. 230-235.
9. Fong, J.X., Shapiai, M.I., Tiew, Y.Y., Batool, U. and Fauzi, H., 2020. Bypassing MRI Pre-processing in Alzheimer’s Disease Diagnosis using Deep Learning Detection Network, Proceedings – 2020 16th IEEE International Colloquium on Signal Processing and its Applications, CSPA 2020 2020, pp. 219-224.
6. Aseri, N.S.M., Ali, N., Yasin, M.N.M., Rashidi, C.B.M., Aljunid, S.A., Endut, R., Hambali, N.A.M.A. and Shapiai, M.I., 2020. Smart embedded-analytics sensors with cloud-based measurement system for HVAC, AIP Conference Proceedings 2020.
7. Ali, N., Amphawan, A., Hafilshah, M.H., Aljunid, S.A., Endut, R., Rashidi, C.B.M., Yasin, M.N.M. and Shapiai, M.I., 2020. Waveguide for vortex mode generation in HVAC cloud management communication, AIP Conference Proceedings 2020.
8. Bahiuddin, I., Mazlan, S.A., Shapiai, M.I., Nordin, N.A., Imaduddin, F., Ubaidillah, Nordin, N.A. and Adiputra, D., 2020. Field dependent-shear stress prediction of magnetorheological fluid using an optimum extreme learning machine model. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), pp. 89-96.
9. Yeu, Y.H., Shapiai, M.I., Ismail, Z.H. and Fauzi, H., 2019. Investigation on different color spaces on faster RCNN for night-time human occupancy modelling, Proceeding – 2019 IEEE 7th Conference on Systems, Process and Control, ICSPC 2019 2019, pp. 118-121.
10. Fauzi, H., Azzam, M.A., Shapiai, M.I., Kyoso, M., Khairuddin, U. and Komura, T., 2019. Energy extraction method for EEG channel selection. Telkomnika (Telecommunication Computing Electronics and Control), 17(5), pp. 2561-2571.
11. Mohamed Elhawary H, Shapiai MI, Zamzuri H, Fauzi H. Investigation on data augmentation for object detection using deep neural network for traffic signs application. Front Artif Intell Appl 2019;318:144-156.
12. Saruchi, S.A., Ariff, M.H.M., Shapiai, M.I., Hassan, N., Wahid, N., Zakaria, N.J., Rahman, M.A.A.
Zamzuri, H. 2019, “Radial basis function neural network for head roll prediction modelling in a motion sickness study”, Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 3, pp. 1637-1644.
13. Aziz, N.A.A., Ibrahim, Z., Aziz, N.H.A., Mubin, M., Mokhtar, N., Shapiai, M.I. (2019), A fitness-based adaptive synchronous-asynchronous switching in simulated kalman filter optimizer, 2019 International Conference on Computer and Information Sciences, ICCIS 2019
14. Ab Rahman, T., Ibrahim, Z., Aziz, N.H.A., Aziz, N.A.A., Mohamad, M.S., Shapiai, M.I. (2019) Evaluation of different horizon lengths in single-agent finite impulse response optimizer, , 2019 International Conference on Computer and Information Sciences, ICCIS 2019
15. Bahiuddin, I., Fatah, A.Y.A., Mazlan, S.A., Shapiai, M.I., Imaduddin, F., Ubaidillah, Utami, D., Muhtazaruddin, M.N. (2019). Comparing the linear and logarithm normalized extreme learning machine in flow curve modeling of magnetorheological fluid, Indonesian Journal of Electrical Engineering and Computer Science , (3) , 1065-1072.
16. Ibrahim, Z., Azmi, K.Z.M., Ab Aziz, N.A., Aziz, N.H.A., Muhammad, B., Jusof, M.F.M., Shapiai, M.I. (2019) , An oppositional learning prediction operator for simulated kalman filter, Proceedings – 3rd International Conference on Computational Intelligence and Applications, ICCIA 2018 pp. 195-199
17. Aziz, N.H.A., Aziz, N.A.A., Jusof, M.F.M., Razali, S., Ibrahim, Z., Adam, A., Shapiai, M.I. ,An analysis on the number of agents towards the performance of the simulated kalman filter optimizer Proceedings – International Conference on Intelligent Systems, Modelling and Simulation, ISMS, pp. 16-21.
18. Al-Dabass D, Ibrahim Shapiai M, Ibrahim Z. Message from the ISMS 2018 Chairs. Proc – Int Conf Intell Syst , Modell Simul , IS 2019;2018-May:ix-x
19. Yusof, Z.M., Ibrahim, Z., Adam, A., Azmi, K.Z.M., Ab Rahman, T., Muhammad, B., Ab Aziz, N.A., Abd Aziz, N.H., Mokhtar, N., Shapiai, M.I. & Muhammad, M.S. 2018, “Distance evaluated simulated kalman filter with state encoding for combinatorial optimization problems”, International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 22-29.
20. Aujih, A. B., Izhar, L. I., Meriaudeau, F., & Ibrahim Shapiai, M. (2018). Analysis of retinal vessel segmentation with deep learning and its effect on diabetic retinopathy classification. Paper presented at the International Conference on Intelligent and Advanced System, ICIAS 2018
21. Zakaria, N. J., Zamzuri, H., Ariff, M. H., Shapiai, M. I., Saruchi, S. A., & Hassan, N. (2018). Fully convolutional neural network for malaysian road lane detection. International Journal of Engineering and Technology(UAE), 7(4), 152-155.
22. Bahiuddin, I., Mazlan, S.A., Shapiai, M.I., Mohamad, N. & Imaduddin, F. 2018, A model of magnetorheological grease using machine learning method.
23. Al-Dabass, D., Shapiai, I. And Ibrahim, Z., 2018. Welcome Message from the General Chairs. AMS 2017 – Asia Modelling Symposium 2017 and 11th International Conference on Mathematical Modelling and Computer Simulation, , pp. ix.
24. Muhammad, B., Pebrianti, D., Ghani, N.A., Aziz, N.H.A., Aziz, N.A.A., Mohamad, M.S., Shapiai, M.I. And Ibrahim, Z., 2018. An application of simulated Kalman filter optimization algorithm for parameter tuning in proportional-integral-derivative controllers for automatic voltage regulator system, SICE ISCS 2018 – 2018 SICE International Symposium on Control Systems 2018, pp. 113-120.
25. Pramudita, B.A., Nugroho, Y.D., Ardiyanto, I., Shapiai, M.I. And Setiawan, N.A., 2018. Removing ocular artefacts in EEG signals by using combination of complete EEMD (CEEMD) – Independent Component Analysis (ICA) based outlier data, Proceeding of 2017 International Conference on Robotics, Automation and Sciences, ICORAS 2017 2018, pp. 1-5.
26. Fauzi, H., Shapiai, M. I., Khairuddin, U., Shah, S., & Ismail, Z. H. (2018). Investigation on energy extraction methods for EEG channels selection in improving common spatial pattern. Paper presented at the IET Conference Publications, 2018(CP750)
27. Haron, N., Jaafar, J., Aziz, I.A., Hassan, M.H. And Shapiai, M.I., 2018. Data trustworthiness in Internet of Things: A taxonomy and future directions, 2017 IEEE Conference on Big Data and Analytics, ICBDA 2017 2018, pp. 25-30.
28. Aziz, F.A.A., Shapiai, M.I., Setiawan, N.A. And Mitsukura, Y., 2017. Classification Of Human Concentration In Eeg Signals Using Hilbert Huang Transform. International Journal Of Simulation: Systems, Science And Technology, 18(1), Pp. 10.1-10.11.
29. Fauzi H, Shapiai MI, Yusof R, Remijn GB, Setiawan NA, Ibrahim Z. The Design Of Spatial Selection Using CUR Decomposition To Improve Common Spatial Pattern For Multi-Trial EEG Classification. Commun Comput Info Sci 2017;751: 428-442.
30. Aziz FAA, Shapiai MI, Aziz AFA, Ali F, Maliha A, Ibrahim Z. EEG Brain Symmetry Index Using Hilbert Huang Transform. Commun Comput Info Sci 2017;751: 548-560.
31. Omairi, A., Ismail, Z. H., Danapalasingam, K. A., & Ibrahim, M. (2017). Power harvesting in wireless sensor networks and its adaptation with maximum power point tracking: Current technology and future directions. IEEE Internet of Things Journal, 4(6), 2104-2115. 10.1109/JIOT.2017.2768410
32. Aasim Asyafi’Ie bin Ahmad, M., bin Harun, M., binti Khalid, P.I., Shapiai, M.I., bin Ibrahi, M.N., Hamid, S.Z.A. “Comparison of the themes of malaysian friday sermons between the year 2010 and 2015” (2017) Indonesian Journal of Electrical Engineering and Computer Science, 6 (1), pp. 212-217.
33. Li, K.G., Shapiai, M.I., Adam, A., Ibrahim, Z. “Feature scaling for EEG human concentration using particle swarm optimization” (2017) Proceedings of 2016 8th International Conference on Information Technology and Electrical Engineering: Empowering Technology for Better Future, ICITEE 2016
34. Ngui W.K.,Leong M.S., Shapiai M.I, Lim, M.H. “Blade fault diagnosis using artificial neural network” International Journal of Applied Engineering Research, 2017
35. Ab. Aziz, N. A., M. N. Aliman, M. S. Najib, N. Subari, A. Zulkifli, M. I. Shapiai, and Z. Ibrahim. 2017. Gravitational Search Algorithm with a More Accurate newton’s Gravitational Principle. Communications in Computer and Information Science. Vol. 751.
36. Prathama, Y. B. H., M. I. Shapiai, S. A. M. Aris, Z. Ibrahim, J. Jaafar, and H. Fauzi. 2017. Common spatial pattern with feature scaling (FSc-CSP) for motor imagery classification. Communications in computer and information science. Vol. 751.
37. Adam A, Ibrahim Z, Mokhtar N, Shapiai MI, Mubin M, Saad I. Feature Selection Using Angle Modulated Simulated Kalman Filter For Peak Classification Of EEG Signals. Springerplus 2016;5(1).
38. Al-Dabass D, Ibrahim Z, Shapiai MI. Welcome Message from Chairs: CIMSim 2015. Proc Int Conf Comput Intell , Model Simulation 2016;2016-September:viii-ix.
39. Asyraf H, Shapiai MI, Setiawan NA, Wan Musa WSNS. Masking covariance for common spatial pattern as feature extraction. J Telecommun Electron Comput Eng 2016;8(11):81-85.
40. Misran MF, Shapiai MI, Dziyauddin RA, Jalil HMSA. Parameter optimization for conventional Soft Frequency reuse in multi cell networks using extreme learning machine and genetic algorithm. J Telecommun Electron Comput Eng 2016;8(11):23-28.
41. Shapiai, I., Ibrahim, Z.,Adam, A., Mokhtar,N “Incorporating prior knowledge in solving system identification problem with insufficient samples based on pareto optimality concept” ICIC Express Letters, 2016
42. Asyafi’Ie bin Ahmad, M.A.a , Harun, M.a, Ibrahim, M.N.b, Shapiai, M.I.c, Khalid, P.a, Hamid, S.a “The quantification of speech intelligibility of Malay words by means of corner vowels” International Review of Mechanical Engineering, 2016
43. Ibrahim, Z., Shapiai, M.I., Satiman, S.N, Mohamad, M.S, Arshad, N.W. “A complete investigation of using weighted kernel regression for the case of small sample problem with noise” ARPN Journal of Engineering and Applied Sciences, 2015
44. Lim, K.S.,Ibrahim, Z., Buyamin, S., Ahmad, A., Shapiai, M.I.Khalil, K.a, Nawawi, S.W., Arshad, N.W., Naim, F. “Analysis of vector evaluated particle swarm optimization guided by non-dominated solutions: Inertia weight, cognitive, and social constants” ICIC Express Letters, 2015
45. Ibrahim, Z., Aziz, N.H.A, Aziz, N.A.A,Razali, S., Shapiai, M.I.,Nawawi, S.W., Mohamad, M.S. “A Kalman filter approach for solving unimodal optimization problems” ICIC Express Letters, 2015
46. Shapiai, I., Sudin, S,Arshad,N.W.B,Ibrahim, Z. “Investigation on different learning techniques for weighted kernel regression in solving small sample problem with noise” ICIC Express Letters, 2015.
47. Asyafie, M.A., Harun, M., Shapiai, M.I. And Khalid, P.I., 2014. Identification Of Phoneme And Its Distribution Of Malay Language Derived From Friday Sermon Transcripts, 2014 Ieee Student Conference On Research And Development, Scored 2014 2014.
48. Adam, A., Mokhtar, N., Mubin, M., Ibrahim, Z., Tumari, M.Z.M. And Shapiai, M.I., 2014. Feature Selection And Classifier Parameter Estimation For Eeg Signal Peak Detection Using Gravitational Search Algorithm, Proceedings – 2014 4th International Conference On Artificial Intelligence With Applications In Engineering And Technology, Icaiet 2014 2014, Pp. 103-108.
49. Ibrahim I, Ibrahim Z, Ahmad H, Md. Yusof Z, Shapiai MI, Nawawi S, et al. An assembly sequence planning approach with binary gravitational search algorithm. Front Artif Intell Appl 2014;265 :179-193.
50. Shapiai MI, Ibrahim Z, Sudin S, Mohamad MS, Khalid M. Investigation on different learning techniques for weighted kernel regression in solving small sample problem. ICIC Express Lett 2012;6(3):705-710.
51. Adam, A., Chew, L.C., Shapiai, M.I., Jau, L.W., Ibrahim, Z. And Khalid, M., 2011. A Hybrid Artificial Neural Network-Naive Bayes For Solving Imbalanced Dataset Problems In Semiconductor Manufacturing Test Process, Proceedings Of The 2011 11th International Conference On Hybrid Intelligent Systems, His 2011 2011, Pp. 133-138
52. Mohd Ibrahim Shapiai, Zuwairie Ibrahim, Marzuki Khalid, Lee Wen Jau, Soon-Chuan Ong and Vladimir Pavlovich, Solving Small Sample Recipe Generation Problem with Hybrid WKRCF-PSO, International Journal on New Computer Architectures and Their Applications, Vol. 1, No. 4, 2011
53. Asrul Adam, Mohd Ibrahim Shapiai, Zuwairie Ibrahim, Marzuki Khalid and Lee Wen Jau, Development of a Hybrid Artificial Neural Network – Naïve Bayes Classifier for Binary Classification Problem of Imbalanced Datasets. ICIC Express Letters, An International Journal of Research and Surveys. No. 9(A), September 2011, pp. 3171-3175.