1.Bahiuddin, I., Imaduddin, F., Mazlan, S. A., Shapiai, M. I., Ubaidillah, Nazmi, N., & Mohamad, N. (2021). A machine learning approach to estimate magnetorheological suspension composition based on magnetic field dependent-rheological properties. Smart Materials and Structures, 30(10)
2. Gopinath, S. C. B., Ismail, Z. H., Shapiai, M. I., & Yasin, M. N. M. (2021). Advancement in biosensor: “Telediagnosis” and “remote digital imaging”. Biotechnology and Applied Biochemistry
3. Gopinath, S. C. B., Ramanathan, S., Yasin, M. N. M., Shapiai, M. I., Ismail, Z. H., & Subramaniam, S. (2021). Essential semiconductor films in micro-/nano-biosensors: Current scenarios. Journal of the Taiwan Institute of Chemical Engineers, doi:10.1016/j.jtice.2021.07.036
4 .Batool, U., Shapiai, M. I., Tahir, M., Ismail, Z. H., Zakaria, N. J., & Elfakharany, A. (2021). A systematic review of deep learning for silicon wafer defect recognition. IEEE Access, doi:10.1109/ACCESS.2021.3106171
5. Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM. Biosensing human blood clotting factor by dual probes: Evaluation by deep long short-term memory networks in time series forecasting. Biotechnol Appl Biochem (2021).
6. Kausar A, Razzak I, Shapiai MI, Beheshti A. 3D shallow deep neural network for fast and precise segmentation of left atrium. Multimedia Syst (2021).
7. Zakaria NJ, Shapiai MI, Fauzi H, Elhawary HMA, Yahya WJ, Abdul Rahman MA, et al. Gradient-Based Edge Effects on Lane Marking Detection using a Deep Learning-Based Approach. Arab J Sci Eng 2020;45(12):10989-11006.
8. Ali, N., Amphawan, A., Hafizalshah, M. H., Aljunid, S. A., Endut, R., Rashidi, C. B. M., Shapiai, M. I. (2020). Waveguide for vortex mode generation in HVAC cloud management communication. Paper presented at the AIP Conference Proceedings, , 2203 doi:10.1063/1.5142151
9. Aseri, N.S.M., Ali, N., Yasin, M.N.M., Rashidi, C.B.M., Aljunid, S.A., Endut, R., Hambali, N.A.M.A. & Shapiai, M.I. 2020, “Smart embedded-analytics sensors with cloud-based measurement system for HVAC”, AIP Conference Proceedings.
10. Fauzi, H., Shapiai, M.I. & Khairuddin, U. 2020, “Transfer Learning of BCI Using CUR Algorithm”, Journal of Signal Processing Systems, vol. 92, no. 1, pp. 109-121.
11. Bahiuddin, I., Wahab, N.A.A., Shapiai, M.I., Mazlan, S.A., Mohamad, N., Imaduddin, F., Ubaidillah. (2019), Prediction of field-dependent rheological properties of magnetorheological grease using extreme learning machine method Journal of Intelligent Material Systems and Structures, (11) , 1727-1742
12. Bahiuddin, I., Mazlan, S. A., Shapiai, M. I., Imaduddin, F., Ubaidillah, & Choi, S. -. (2019). A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization. Applied Soft Computing Journal, 76, 615-628. doi:10.1016/j.asoc.2018.12.038
13. Muhammad, B., Ibrahim, Z., Shapiai, M.I., Mohamad, M.S., Azmi, K.Z.M., Jusof, M.F.M. (2019), Oppositional learning prediction operator with jumping rate for simulated kalman filter, 2019 International Conference on Computer and Information Sciences, ICCIS 2019
14. Fauzi, H., Shapiai, M.I., Shah Abdullah, S., Ibrahim, Z. (2019), Automatic Energy Extraction Methods for EEG Channel Selection, Proceedings – 2018 International Conference on Control, Electronics, Renewable Energy and Communications, ICCEREC 2018, pp. 70-75
15. Muhammad, B., Jusof, M.F.M., Shapiai, M.I., Adam, A., Yusof, Z.M., Azmi, K.Z.M., Aziz, N.H.A., (…), Mokhtar, N. (2019). Feature selection using binary simulated kalman filter for peak classification of EEG signals, Proceedings – International Conference on Intelligent Systems, Modelling and Simulation, ISMS, pp. 1-6.
16. Bahiuddin, I., Mazlan, S. A., Shapiai, M. I., Imaduddin, F., Ubaidillah, & Choi, S. -. (2019). A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization. Applied Soft Computing Journal, 76, 615-628.
17. Ab Rahman, T., Ibrahim, Z., Aziz, N. H. A., Aziz, N. A. A., Mohamad, M. S., & Shapiai, M. I. (2019). Evaluation of different horizon lengths in single-agent finite impulse response optimizer. Paper presented at the 2019 International Conference on Computer and Information Sciences, ICCIS 2019
18. Aziz, N. A. A., Ibrahim, Z., Aziz, N. H. A., Mubin, M., Mokhtar, N., & Shapiai, M. I. (2019). A fitness-based adaptive synchronous-asynchronous switching in simulated kalman filter optimizer. Paper presented at the 2019 International Conference on Computer and Information Sciences, ICCIS 2019
19. Muhammad, B., Ibrahim, Z., Shapiai, M. I., Mohamad, M. S., Azmi, K. Z. M., & Jusof, M. F. M. (2019). Oppositional learning prediction operator with jumping rate for simulated kalman filter. Paper presented at the 2019 International Conference on Computer and Information Sciences, ICCIS 2019
20. Bahiuddin, I., Mazlan, S.A., Shapiai, M.I., Choi, S.-., Imaduddin, F., Rahman, M.A.A. And Ariff, M.H.M., 2018. A New Constitutive Model Of A Magneto-Rheological Fluid Actuator Using An Extreme Learning Machine Method. Sensors And Actuators, A: Physical, 281, Pp. 209-221.
21. Maliha, A., Yusof, R. And Shapiai, M.I., 2018. Extreme learning machine for structured output spaces. Neural Computing and Applications, 30(4), pp. 1251-1264
22. Ibrahim, Z., Azmi, K. Z. M., Ab Aziz, N. A., Aziz, N. H. A., Muhammad, B., Jusof, M. F. M., & Shapiai, M. I. (2018). An oppositional learning prediction operator for simulated kalman filter. Paper presented at the Proceedings – 3rd International Conference on Computational Intelligence and Applications, ICCIA 2018, 195-199.
23. Fauzi, H., Shapiai, M. I., Shah Abdullah, S., & Ibrahim, Z. (2018). Automatic energy extraction methods for EEG channel selection. Paper presented at the Proceedings – 2018 International Conference on Control, Electronics, Renewable Energy and Communications, ICCEREC 2018, 70-75.
24. Muhammad, B., Jusof, M. F. M., Shapiai, M. I., Adam, A., Yusof, Z. M., Azmi, K. Z. M., . . . Mokhtar, N. (2018). Feature selection using binary simulated kalman filter for peak classification of EEG signals. Paper presented at the Proceedings – International Conference on Intelligent Systems, Modelling and Simulation, ISMS, , 2018-May 1-6.
25. Muhammad, B., Jusof, M. F. M., Shapiai, M. I., Adam, A., Yusof, Z. M., Azmi, K. Z. M., . . . Mokhtar, N. (2018). Feature selection using binary simulated kalman filter for peak classification of EEG signals. Paper presented at the Proceedings – International Conference on Intelligent Systems, Modelling and Simulation, ISMS, , 2018-May 1-6.
26. Aujih, A. B., Izhar, L. I., Meriaudeau, F., & Ibrahim Shapiai, M. (2018). Analysis of retinal vessel segmentation with deep learning and its effect on diabetic retinopathy classification. Paper presented at the International Conference on Intelligent and Advanced System, ICIAS 2018
27. Zuwairie, Ibrahim and Suad Khairi, Mohammed and Norazian, Subari and Nor Azlina, Ab Aziz and Nor Hidayati, Abdul Aziz and Tasiransurini, Ab Rahman and Asrul, Adam and Zulkifli, Md. Yusof and Mohd Ibrahim, Shapiai and Norrima, Mokhta (2018). A review on fundamental advancements of black hole algorithm. International Conference on Artificial Life and Robotics (ICAROB2018), 1-4 February 2018 , B-Con Plaza, Beppu, Oita, Japan . pp. 241-244..
28. Zuwairie, Ibrahim and Suad Khairi, Mohammed and Norazian, Subari and Asrul, Adam and Zulkifli, Md. Yusof and Nor Azlina, Ab Aziz and Nor Hidayati, Abdul Aziz and Tasiransurini, Ab Rahman and Mohd Ibrahim, Shapiai and Norrima, Mokhtar (2018) A survey on applications of black hole algorithm. In: International Conference on Artificial Life and Robotics (ICAROB2018), 1-4 February 2018 , B-Con Plaza, Beppu, Oita, Japan. pp. 245-248.
29. Muhammad, B., Pebrianti, D., Ghani, N. A., Aziz, N. H. A., Aziz, N. A. A., Mohamad, M. S., Ibrahim, Z. (2018). An application of simulated kalman filter optimization algorithm for parameter tuning in proportional-integral-derivative controllers for automatic voltage regulator system. Paper presented at the SICE ISCS 2018 – 2018 SICE International Symposium on Control Systems, , 2018-January 113-120.
30. Shapiai, Mohd Ibrahim, Zuwairie Ibrahim, and Asrul Adam. “Pareto Optimality Concept for Incorporating Prior Knowledge for System Identification Problem with Insufficient Samples.” Arabian Journal for Science and Engineering 42.7 (2017): 2697-2710.
31. Adam, A., Ibrahim, Z., Mokhtar, N., Shapiai, M. I., Cumming, P., & Mubin, M. (2017). Improving EEG signal peak detection using feature weight learning of a neural network with random weights for eye event-related applications. Sadhana – Academy Proceedings in Engineering Sciences, 42(5), 641-653.
32. Aziz, F. A. A., Fauzi, H., Shapiai, M. I., Aziz, A. F. A., Remijn, G., & Ismail, Z. H. (2017). EEG BSI-HHT in ischaemic stroke with multifocal infarction. Paper presented at the IEEE Region 10 Annual International Conference, Proceedings/TENCON, , 2017-December 1651-1656.
33. Bahiuddin, I., Mazlan, S. A., Shapiai, M. I., Imaduddin, F., & Ubaidillah. (2017). Study of extreme learning machine activation functions for magnetorheological fluid modelling in medical devices application. Paper presented at the Proceeding of 2017 International Conference on Robotics, Automation and Sciences, ICORAS 2017, , 2018-March 1-5.
34. Bahiuddin, I., Usak, S. A. M., Shapiai, M. I., & Mazlan, S. A. (2017). An application of extreme learning machine in a graphical user interface for magnetorheological fluid study. Paper presented at the Proceeding of 2017 International Conference on Robotics, Automation and Sciences, ICORAS 2017, , 2018-March 1-5.
35. Brahmantya Aji Pramudita; Yabes Dwi Nugroho; Igi Ardiyanto; Mohd. Ibrahim Shapiai, Noor Akhmad Setiawan (2017). Removing ocular artefacts in EEG signals by using combination of complete EEMD (CEEMD) — Independent Component Analysis (ICA) based outlier data. 2017 International Conference on Robotics, Automation and Sciences (ICORAS).
36. Md Zaini, M. H., Shapiai, M. I., Mohamed, A. R., Fauzi, H., Ibrahim, Z., & Adam, A. (2017). Hippocampal segmentation using structured extreme learning machine with bag of features. Paper presented at the Proceeding of 2017 International Conference on Robotics, Automation and Sciences, ICORAS 2017.
37. Fauzi, H., Shapiai, M. I., Setiawan, N. A., Jaafar, J., & Mustafa, M. (2017). Channel selection for common spatial pattern based on energy calculation of motor imagery EEG signal. Paper presented at the ICCREC 2017 – 2017 International Conference on Control, Electronics, Renewable Energy, and Communications, Proceedings, , 2017-January 33-39.
38. Haron, N., Jaafar, J., Aziz, I. A., Hassan, M. H., & Shapiai, M. I. (2017). Data trustworthiness in internet of things: A taxonomy and future directions. Paper presented at the 2017 IEEE Conference on Big Data and Analytics, ICBDA 2017, , 2018-January 25-30.
39. Zaini, Muhammad Hafiz Md; Shapiai, Mohd Ibrahim; Mohamed, Ahmad Rithauddin; et al. (2017) Classification of Hippocampal Region using Extreme Learning Machine. ICAROB 2017: Proceedings of The 2017 International Conference On, Jan 19-22 2017 35-42
40. Adam, A., Ibrahim, Z., Mokhtar, N., Shapiai, M. I., Mubin, M., & Saad, I. (2016). Feature selection using angle modulated simulated kalman filter for peak classification of EEG signals. SpringerPlus, 5(1)
41. Adam, A., Ibrahim, Z., Mokhtar, N., Shapiai, M. I., Cumming, P., & Mubin, M. (2016). Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal. SpringerPlus, 5(1)
42. Li, K. G., Shapiai, M. I., Adam, A., & Ibrahim, Z. (2016). Feature scaling for EEG human concentration using particle swarm optimization. Paper presented at the Proceedings of 2016 8th International Conference on Information Technology and Electrical Engineering: Empowering Technology for Better Future, ICITEE 2016
43. Adam, A., Ibrahim, Z., Mokhtar, N., Shapiai, M. I., & Mubin, M. (2016). Evaluation of different peak models of eye blink EEG for signal peak detection using artificial neural network. Neural Network World, 26(1), 67-89.
44. Adam, A; Mokhtar, N ; Mubin, M ; Ibrahim, Z ; Shapiai, MI (2015). Dingle’s Model-based EEG Peak Detection using a Rule-based Classifier. Proceedings of International Conference on Artificial Life and Robotics (ICAROB2015), 207-210
45. Ibrahim, Zuwairie; Arshad, Nurul Wahidah; Shapiai, Mohd Ibrahim; Mokhtar, M (2015). Different Learning Functions for Weighted Kernel Regression in Solving Small Sample Problem with Noise, Proceedings of International Conference on Artificial Life and Robotics (ICAROB2015) 211-214.
46. Ibrahim I, Ibrahim Z, Ahmad H, Md. Yusof Z, Shapiai MI, Nawawi S, et al. An assembly sequence planning approach with binary gravitational search algorithm. Front Artif Intell Appl 2014;265:179-193.
47. Adam, A., Shapiai, M. I., Mohd Tumari, M. Z., Mohamad, M. S., & Mubin, M. (2014). Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization. Scientific World Journal, 2014
48. Lim, K. S., Buyamin, S., Ahmad, A., Shapiai, M. I., Naim, F., Mubin, M., & Kim, D. H. (2014). Improving vector evaluated particle swarm optimisation using multiple nondominated leaders. Scientific World Journal, 2014
49. Asyafie, M. A., Harun, M., Shapiai, M. I., & Khalid, P. I. (2014). Identification of phoneme and its distribution of malay language derived from friday sermon transcripts. Paper presented at the 2014 IEEE Student Conference on Research and Development, SCOReD 2014.
50. Adam, A., Mokhtar, N., Mubin, M., Ibrahim, Z., Tumari, M. Z. M., & Shapiai, M. I. (2014). Feature selection and classifier parameter estimation for EEG signal peak detection using gravitational search algorithm. Paper presented at the Proceedings – 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, ICAIET 2014, 103-108.