PhD & MPhil Titles

If you are interested in coming to UTM as a Ph.D / M/Phil students, and possibly working with me, here are some topics that I’m currently working with;

  1. Bio-inspired airfoil shapes for reduction Leading/Trailing edges noise.
  2. Energy Harvesting for powering IoT Devices using flow induced vibration.
  3. Aerodynamic Performance And Safety For A Proposed Malaysia High Speed
    Train Traveling Under Crosswinds
  4. Aerodynamics loading and Noise emissions from a high speed train
  5. Aeroacoustics refinement of a passenger car DrivAer for NVH improvement

Contact Me at researchsukri@gmail.com

Flow modelling and noise generation of interacting prisms.

Noise generation is a significant issue for High-Speed Trains (HSTs), and as speeds increase aerodynamically generated noise becomes the dominant noise source. In this article, the effect of nose shape, carriage separation and yaw angle on the aerodynamics and noise generation are analysed using two prisms, representing a HST model. The aerodynamics are modelled using Computation Fluid Dynamics (CFD), and the flow velocity and turbulence intensity in various positions in the wake are compared with experimental hotwire data measured in the Anechoic Wind Tunnel (AWT) at The University of Adelaide, with good agreement. Finally, acoustic beamforming images of the noise generated by the interacting prisms measured in the AWT are presented. The acoustic results show that a blunt nose tends to increase noise at lower frequencies significantly, while increasing prism separation tends to increase noise over most frequencies, but most significantly at midfrequencies, and increasing yaw angle increases noise across all frequencies. Beamforming results show that at lower frequencies, this noise tends to be generated at the leading and trailing edges, while at higher frequencies the noise tends to be generated in the carriage gap.

AIAA Aviation,16-20 June 2014, Atlanta, GA, 20th AIAA/CEAS Aeroacoustics Conference.

Paper: AIAA 2014-3287