PhD Summary

 

Traffic signal control systems are usually designed to maximise vehicle capacity and minimise vehicle delay with the needs of pedestrians considered separately as necessary. Therefore, the aim of this research is to improve the signal control at pedestrian crossings, so that optimisation takes into account the total delay to all road users including pedestrians. Upstream Detection and Volumetric Detection at pedestrian crossing facilities have been identified as potential alternatives that might enhance pedestrian amenity. These new possibilities were evaluated using a micro-simulation software. Research to date has shown that the VISSIM model is suitable for this evaluation and the latest algorithm for signal controlled pedestrian crossing, the Puffin has been coded into the model and tested. The Puffin then formed a base control strategy against which new strategies were evaluated. After calibration and validation in VISSIM model, an Upstream Detection and Volumetric Detection were developed. In the Upstream Detection, a push button was located 5 meters at an upstream location of the crossing. In the Volumetric Detection, the optimum maximum green was determined based on the lowest total person delay and total delay costs. The results showed that both Upstream Detection and Volumetric Detection have promising benefits to implement at Puffin crossing. Upstream Detection has a clear benefit at a lower vehicle flow while the Volumetric Detection shows there are changes on maximum green settings at a lower vehicle flow as pedestrian flow increases.