Development of a Student Absence Submission System

Main Student Absence System

By Shahabuddin Amerudin

The development of the Student Absence Submission System focuses on streamlining and improving the efficiency of student absence reporting. This system is designed to provide students a simple, intuitive, and accessible platform to report their absences to the university, while offering administrative staff an organized system to manage and monitor these reports. This article provides an in-depth overview of the system, detailing its requirements, functionality, and future plans for enhancement.

1. System Overview

The Student Absence Submission System (https://absence.kstutm.com) allows students to submit their absence reports through an online form, attaching any supporting documentation such as a medical certificate or other relevant documents. The system is designed with a user-friendly interface for students, and a comprehensive admin dashboard for university staff to monitor and review submissions.

2. Features of the System

2.1 Student Absence Form

The core feature of the system is an online form where students can provide detailed information about their absence. This form includes fields such as:

  • Matrix Number: A unique identification number for students.
  • Course Code: The code of the course the student is attending.
  • Session and Semester: Details regarding the academic session and semester.
  • Type of Absence: Personal, Medical, or other specified reasons.
  • Duration: Number of days the student is absent.
  • Supporting Document Upload: Students can upload PDF or image files, such as medical certificates or formal letters.

Upon submission, the form ensures that all necessary fields are completed and allows students to upload their documents. Additionally, a confirmation message is displayed to the student once the submission is successful.

2.2 Document Management

The system stores uploaded files in a designated folder and prevents file overwriting by renaming files if they have the same name as an existing file. For example, if two students submit files named “medical_note.pdf”, the system will automatically rename the second file to avoid overwriting, ensuring that all submissions are saved correctly.

2.3 Admin Dashboard

The system includes an admin panel for university staff to view and manage student submissions. The dashboard presents the following key statistics:

  • Total Submissions: The number of absence reports submitted.
  • Submissions by Course: A breakdown of reports based on course codes.
  • Submissions by Session: The number of reports categorized by session.
  • Type of Absence: Visualization of absences categorized by their type (personal, medical, etc.).

These statistics are presented in both numerical and graphical formats for better data visualization and analysis. The admin panel also includes a sorting function, allowing staff to filter and view submissions by fields such as name, course, and session.

2.4 Data Storage

Student submissions are stored in a JSON file, which includes detailed information such as the student’s matrix number, course, reason for absence, duration, file path for supporting documents, and the exact submission time (in the format DD-MM-YYYY HH:MM).

3. Technology Stack

The system is built using a combination of web technologies that ensure responsiveness, reliability, and accessibility:

  • Frontend: HTML, CSS, and JavaScript are used to create an intuitive and responsive user interface.
  • Backend: PHP handles form submissions, file management, and the display of data in the admin panel.
  • Database: JSON format is used for data storage, which simplifies the system and allows for easy management of student submissions.
  • Responsive Design: The system is designed to be responsive, ensuring compatibility with both desktop and mobile devices, enhancing accessibility for students and staff alike.

4. Planned Future Enhancements

The system currently operates with basic features to manage student submissions. However, several improvements are planned for future iterations, including:

  • Matrix Number Validation: One significant enhancement will be the integration of matrix number validation. In this future version, the system will check the matrix number entered by the student against a pre-defined list of valid students. This feature will prevent submissions from unauthorized users and ensure that only students registered in the university system can report their absence.
  • Notification System: Future updates may also include a notification system where students, admin staff and parents receive emails upon submission or approval of absence reports.
  • Advanced Filtering Options: The admin dashboard could be enhanced with advanced filtering and search capabilities, allowing staff to quickly find specific reports based on various criteria.

5. Security and Data Integrity

To ensure the security of student information, the system incorporates several key features:

  • File Renaming: As mentioned, the system automatically renames files if a similar file name already exists in the database. This prevents overwriting and ensures that each submission is preserved uniquely.
  • Required Fields: All form fields are mandatory, ensuring that incomplete submissions cannot be made. This helps ensure that students provide all necessary information for their absence report.
  • Data Backup: The JSON file containing submission data can be easily backed up or migrated to other formats such as a relational database if the system scales in the future.

6. Conclusion

The Student Absence Submission System offers a streamlined and efficient solution for managing student absence reports at the university. With its user-friendly interface, robust admin panel, and the ability to track and store all data securely, the system is an essential tool for both students and administrators. Although the system is fully functional, future updates such as matrix number validation and enhanced filtering will improve its robustness and scalability. This system demonstrates how modern web technologies can address the administrative challenges faced by educational institutions, making processes more efficient and accessible.

Recent Methods for Evaluating GNSS Receiver Accuracy and Reliability

https://eos-gnss.com/knowledge-base/gps-overview-1-what-is-gps-and-gnss-positioning

By Shahabuddin Amerudin

Global Navigation Satellite System (GNSS) receivers are vital in Geographic Information Systems (GIS), serving as the foundation for accurate spatial data collection. These systems are integral to a wide range of applications, including urban planning, precision agriculture, infrastructure development, and environmental monitoring, all of which demand high positional accuracy for reliable decision-making. Achieving sub-meter accuracy is essential, as even small positional errors can have significant implications, such as misalignment in land parcel delineation or imprecise application of resources in precision agriculture (Lachapelle & El-Rabbany, 2021). GNSS receivers, however, vary in performance due to factors like environmental conditions, satellite geometry, and receiver quality. This article explores the most recent methods employed to evaluate GNSS accuracy, with a focus on achieving sub-meter precision and reliability.

1. Root Mean Square Error (RMSE) Analysis

Root Mean Square Error (RMSE) is one of the most widely utilized metrics for assessing GNSS receiver accuracy. RMSE calculates the difference between GNSS-measured coordinates and reference coordinates, providing an overall measure of positional error. It has become a standard method for evaluating accuracy across diverse GNSS applications, including those requiring sub-meter precision.

The primary advantage of RMSE is that it offers a single-value summary of the average error, allowing for straightforward comparisons between different receivers or correction methods. For example, in precision agriculture or urban planning, using RMSE enables decision-makers to quantify how much the GNSS-based positional data deviates from known control points (Rizos & Wang, 2022). RMSE is calculated by comparing the deviations in the X, Y, and Z axes and is particularly useful when determining how well a receiver performs under various environmental conditions.

2. Circular Error Probable (CEP)

Circular Error Probable (CEP) is another widely used method for evaluating the accuracy of GNSS receivers, particularly in measuring horizontal accuracy. CEP defines a circle within which 50% of the GPS measurements are expected to fall, offering a simplified yet effective way to assess positional accuracy in two-dimensional space. It is especially useful in GIS applications that rely heavily on horizontal coordinates, such as mapping and navigation (Langley, 2023).

CEP is often applied in tandem with RMSE to provide a more nuanced understanding of GNSS accuracy. While RMSE evaluates overall error, CEP focuses specifically on horizontal accuracy, making it ideal for GIS users interested in the precision of latitude and longitude measurements (Misra & Enge, 2019). By analyzing the distribution of positional errors, CEP gives an intuitive measure of how spread out or clustered the data points are around the true position.

3. Horizontal and Vertical Dilution of Precision (HDOP/VDOP)

Dilution of Precision (DOP) is a critical factor in determining GNSS accuracy, with Horizontal DOP (HDOP) and Vertical DOP (VDOP) values indicating the quality of satellite geometry and its impact on positional accuracy. Low DOP values suggest better satellite configurations, which improve the reliability of positional data.

HDOP and VDOP are particularly useful for assessing how satellite geometry affects horizontal and vertical accuracy, respectively. Many GNSS receivers report HDOP and VDOP values alongside positional data, allowing users to evaluate the quality of the satellite constellation at the time of data collection (Groves, 2020). This makes DOP values essential for understanding how well GNSS receivers perform in varying environmental conditions, such as urban canyons or heavily forested areas, where satellite visibility may be obstructed (Lachapelle & El-Rabbany, 2021).

4. Standard Deviation of Coordinates

The standard deviation of coordinates provides insight into the consistency of GNSS receiver performance by measuring the variation of positional data around a mean value. It is particularly useful in detecting irregularities or errors caused by multipath effects or signal interference. This method allows researchers to evaluate the spread of GNSS measurements and identify outliers that may be affecting overall accuracy.

The standard deviation is calculated by averaging the collected coordinates and determining how much each data point deviates from this average. A low standard deviation indicates that the positional measurements are closely clustered around the mean, reflecting good consistency and reliability (Kaplan & Hegarty, 2017). This method is especially beneficial for applications where long-term consistency is more critical than instantaneous accuracy, such as in environmental monitoring or geodetic surveying (Misra & Enge, 2019).

5. Kinematic vs. Static Testing

In addition to static testing, where the GNSS receiver remains stationary at a known point, kinematic testing evaluates receiver performance during movement. Kinematic testing simulates real-world applications, such as vehicle tracking or navigation, where the receiver must maintain accuracy while in motion.

Kinematic testing provides valuable insights into how well a GNSS receiver performs under dynamic conditions, making it essential for assessing performance in navigation-based applications. In these tests, the receiver is moved along a predetermined path, and its recorded positions are compared to the known path using metrics like RMSE and CEP. This method is crucial for understanding how well a receiver can maintain accuracy while compensating for motion, an essential consideration in vehicle-based GIS applications (Li & Zhang, 2022).

6. Multi-Constellation GNSS Evaluation

Modern GNSS receivers have the ability to track multiple satellite constellations, such as GPS, GLONASS, Galileo, and BeiDou, which improves the accuracy and reliability of positional data. Evaluating performance across multiple constellations allows researchers to identify which satellite systems and combinations provide the best accuracy in various environments.

Multi-constellation tracking has become particularly important in environments where satellite visibility is limited, such as urban areas with tall buildings or dense forests. By using multiple constellations, GNSS receivers can compensate for the limitations of individual systems, leading to improved accuracy and reliability (Wubbena & Seeber, 2021). Performance is evaluated by comparing data collected from different constellations and analyzing the impact on positional accuracy using metrics such as RMSE and standard deviation (Hofmann-Wellenhof & Lichtenegger, 2020).

7. Positional Accuracy Improvement with Differential Correction

Differential correction techniques such as Real-Time Kinematic (RTK), Satellite-Based Augmentation Systems (SBAS), and Precise Point Positioning (PPP) are commonly used to improve GNSS accuracy. These methods provide correction data that compensates for satellite and atmospheric errors, significantly enhancing the precision of positional measurements.

RTK, for example, can achieve sub-centimeter accuracy, making it an invaluable tool for applications requiring high precision, such as cadastral mapping or infrastructure development. The effectiveness of differential correction is often assessed by comparing data collected with and without correction, with accuracy improvements quantified through RMSE and other metrics (Ge & Xie, 2023). These correction methods are crucial for ensuring reliable GNSS data in areas where uncorrected GNSS signals may be insufficient for sub-meter accuracy.

8. Geostatistical Analysis

Geostatistical methods, such as Kriging and Spatial Autocorrelation, are increasingly used to analyze the spatial distribution of GNSS errors. These techniques help identify areas where errors cluster and understand how environmental factors, such as building density or tree cover, influence GNSS accuracy.

By adding a spatial dimension to error analysis, geostatistical methods offer valuable insights into the environmental variables that affect GNSS performance. Kriging, for instance, can model the spatial distribution of errors, allowing researchers to predict where inaccuracies are likely to occur based on environmental conditions (Ge & Xie, 2023). This approach is particularly useful for urban planners and environmental scientists who need to account for spatial biases in their data.

9. Machine Learning-Based Accuracy Prediction

In recent years, machine learning techniques have emerged as a powerful tool for predicting GNSS accuracy based on environmental factors. Models such as decision trees, random forests, and neural networks use historical GNSS data and environmental conditions to predict likely accuracy levels before data collection occurs.

Machine learning models can analyze vast amounts of data to identify patterns and predict GNSS performance in challenging environments, such as areas with poor satellite visibility or extreme weather conditions (Kim & Park, 2022). This predictive capability enables GIS professionals to anticipate accuracy issues and adjust their data collection strategies accordingly, making machine learning an invaluable tool for improving GNSS reliability.

Conclusion

The evaluation of GNSS receiver accuracy is critical to ensuring the reliability of spatial data in GIS applications. Recent advancements in evaluation methods, such as RMSE, CEP, DOP analysis, and machine learning-based prediction, provide powerful tools for assessing and improving GNSS accuracy. These methods allow GIS professionals to make informed decisions about the reliability of their GNSS receivers, ensuring that spatial data collection workflows are optimized for accuracy and precision. The growing use of multi-constellation GNSS receivers and differential correction techniques further enhances the accuracy of positional data, making these methods indispensable for modern GIS applications.

References

Ge, M., & Xie, X. (2023). Geostatistical Approaches in GNSS Accuracy Analysis. GIScience Journal.

Groves, P. (2020). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems.

Hofmann-Wellenhof, B., & Lichtenegger, H. (2020). GNSS: Global Navigation Satellite Systems – Applications and Challenges.

Kaplan, E. D., & Hegarty, C. (2017). Understanding GPS/GNSS: Principles and Applications.

Kim, Y. K., & Park, S. H. (2022). Machine Learning for GNSS Accuracy Prediction in Challenging Environments. Sensors.

Lachapelle, G., & El-Rabbany, A. (2021). Understanding GNSS Errors and Performance Metrics. GNSS Solutions.

Langley, R. B. (2023). Circular Error Probable in GNSS Accuracy Assessment. Navigation Journal.

Li, Y., & Zhang, L. (2022). Kinematic Testing for GNSS Receivers: A Review. International Journal of Navigation and Observation.

Misra, P., & Enge, P. (2019). Global Positioning System: Signals, Measurements, and Performance.

Rizos, C., & Wang, J. (2022). Evaluating GNSS Receiver Accuracy Using RMSE. Journal of Geodesy.

Wubbena, G., & Seeber, G. (2021). Multi-Constellation GNSS in Complex Environments. Journal of GNSS Engineering.

New Academic Session for Semester 1, 2024/2025

https://builtsurvey.utm.my/wp-content/uploads/2024/09/Ppt-Slide-Welcome-scaled-1.jpg

By Shahabuddin Amerudin 3 October 2024

UTM JOHOR BAHRU: As the new academic session kicks off on October 6, 2024, faculty members and staff at the Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia (UTM) are preparing to welcome students and start the first semester of the 2024/2025 academic year with high spirits. As a leading educational institution in the field of Geoinformation, the Department of Geoinformation is dedicated to providing quality education and innovative research to meet the evolving needs of the global community.

A significant change taking place at UTM is the restructuring of the faculties, effective October 1, 2024. As part of this effort, the Geoinformation Program is now officially recognized as the Department of Geoinformation. This change also sees the title of Director replaced with Head of Department, reflecting a more specific role in managing this rapidly growing department. This rebranding opens opportunities for the Department of Geoinformation to continue strengthening its reputation nationally and internationally while ensuring the delivery of relevant and high-quality programs.

To enhance undergraduate education, the Department of Geoinformation has successfully attracted a significant number of new students. The registration of undergraduate students on September 28, 2024, saw 144 new students enrolling in two main programs. The Bachelor of Engineering (Honors) in Geomatics (SBEUH) welcomed 83 students, while the Bachelor of Science (Honors) in Geoinformation (SBEGH) recorded 61 students. Registration data for the Geomatics Program reveals that there are 13 students from matriculation, 1 from STPM (Malaysian Higher School Certificate), 4 from foundation studies, and 65 from diploma programs. In the Geoinformatics Program, the latest data shows there are 52 students from STPM, matriculation, and foundation studies, along with 10 diploma students. These numbers reflect a strong confidence in the quality of the academic programs, which effectively combine theoretical knowledge with practical skills necessary for the dynamic industry.

At the postgraduate level, the Department of Geoinformation is also witnessing an increase in student enrollment. The registration for postgraduate students, which commenced on October 2, 2024, is still ongoing, and so far, 12 students have registered for PhD programs in Geomatics, Geoinformatics, and Remote Sensing. The Master of Philosophy program has attracted 8 students, while an additional 6 students have enrolled in the Master’s by Course Work. The department hopes to enhance international marketing efforts to attract more postgraduate students from around the globe, especially as the field of Geoinformation plays an increasingly vital role in addressing global issues such as climate change, disaster management, and smart city development.

The Department of Geoinformation offers accredited academic programs designed to meet industry demands, equipping students with various skills in geospatial data acquisition and collection technologies, geospatial data processing and analysis, as well as the development of critical Geographic Information Systems (GIS) applications for decision-making. The uniqueness of these programs lies in their research-based learning approach and close collaboration with both public and private sectors, allowing students to gain valuable and competitive industry experience.

Through ongoing efforts to enhance teaching and research quality, the Department of Geoinformation frequently invites the international community to participate in its programs, which have proven capable of producing outstanding and competent graduates in the geospatial field. For students from diverse educational backgrounds, the Department of Geoinformation provides opportunities to enhance their knowledge, whether through undergraduate admissions from matriculation, STPM, foundation studies, or diploma programs, or through postgraduate pathways for further studies.

Faculty members and staff welcome students and researchers from around the world to join them in expanding new horizons in the field of Geoinformation. The Department of Geoinformation at UTM remains committed to being a leader in impactful research and providing a holistic educational platform that aligns with the ever-pressing global needs.

Sesi Perkuliahan Baru Semester 1 Sesi 2024/2025

https://builtsurvey.utm.my/wp-content/uploads/2024/09/Ppt-Slide-Welcome-scaled-1.jpg

Oleh Shahabuddin Amerudin 3 Oktober 2024

UTM JOHOR BAHRU: Dengan tibanya sesi perkuliahan baru pada 6 Oktober 2024, pensyarah dan kakitangan di Fakulti Alam Bina dan Ukur, Universiti Teknologi Malaysia (UTM) bersiap sedia untuk menyambut pelajar serta memulakan semester 1 sesi 2024/2025 dengan semangat yang tinggi. Sebagai pusat pendidikan terkemuka dalam bidang Geoinformasi, Jabatan Geoinformasi sentiasa berusaha untuk menawarkan pendidikan berkualiti dan penyelidikan inovatif bagi memenuhi keperluan komuniti global yang semakin berkembang.

Satu perubahan signifikan yang berlaku di UTM adalah penstrukturan semula fakulti-fakulti yang berkuat kuasa pada 1 Oktober 2024. Dalam usaha ini, Program Geoinformasi kini dikenali sebagai Jabatan Geoinformasi. Dengan perubahan ini, jawatan Pengarah telah ditukar kepada Ketua Jabatan, menggambarkan peranan yang lebih spesifik dalam menguruskan jabatan yang berkembang pesat ini. Penjenamaan semula ini membuka ruang kepada Jabatan Geoinformasi untuk terus mengukuhkan reputasinya di peringkat nasional dan antarabangsa, sambil memastikan penawaran program yang relevan dan berkualiti.

Dalam usaha memperkasa pendidikan prasiswazah, Jabatan Geoinformasi telah berjaya menarik sejumlah besar pelajar baru. Pendaftaran pelajar prasiswazah yang berlangsung pada 28 September 2024 menyaksikan 144 orang pelajar baharu telah mendaftar bagi dua program utama. Program Sarjana Muda Kejuruteraan Geomatik dengan Kepujian (SBEUH) telah menerima 83 orang pelajar, manakala Sarjana Muda Sains Geoinformasi dengan Kepujian (SBEGH) pula mencatat 61 orang pelajar. Data pendaftaran pelajar bagi Program Kejuruteraan Geomatik menunjukkan bahawa terdapat 13 pelajar dari matrikulasi, 1 pelajar dari STPM, 4 pelajar dari asasi, dan 65 pelajar dari diploma. Bagi Program Geoinformatik, data terkini menunjukkan terdapat 52 pelajar dari STPM, matrikulasi, dan asasi, serta 10 pelajar dari diploma. Angka ini menunjukkan keyakinan yang tinggi terhadap kualiti program akademik yang telah diiktiraf kerana menggabungkan pengetahuan teori dengan kemahiran praktikal yang diperlukan dalam industri yang dinamik.

Di peringkat pascasiswazah, Jabatan Geoinformasi juga sedang menyaksikan peningkatan bilangan pelajar. Pendaftaran pelajar pascasiswazah yang bermula pada 2 Oktober 2024 masih lagi berjalan, dan setakat ini, seramai 12 pelajar telah mendaftar untuk program PhD dalam bidang Geomatik, Geoinformatik, dan Remote Sensing. Program Sarjana Falsafah telah menarik 8 pelajar, manakala 6 pelajar lagi telah mendaftar bagi Sarjana Kerja Kursus. Jabatan berharap dapat meningkatkan usaha pemasaran di peringkat antarabangsa bagi menarik lebih ramai pelajar pascasiswazah dari seluruh dunia, memandangkan bidang Geoinformasi mempunyai peranan yang semakin penting dalam menangani isu global seperti perubahan iklim, pengurusan bencana, dan pembangunan bandar pintar.

Jabatan Geoinformasi menawarkan program-program akademik yang diiktiraf dan direka untuk memenuhi kehendak industri, di samping mempersiapkan pelajar dengan pelbagai kemahiran menggunakan teknologi perolehan dan pengumpulan data geospatial, pemprosesan dan penganalisaan data geospatial, serta pembangunan aplikasi Geographic Information Systems (GIS) yang kritikal dalam membuat keputusan. Keunikan program ini terletak pada pendekatan pembelajaran berasaskan penyelidikan dan kerjasama erat dengan sektor awam dan swasta, membolehkan pelajar memperoleh pengalaman industri yang bernilai dan kompetitif.

Melalui usaha berterusan untuk meningkatkan kualiti pengajaran dan penyelidikan, Jabatan Geoinformasi sering menjemput komuniti antarabangsa untuk menyertai program-program yang dijalankan, yang telah terbukti berupaya menghasilkan graduan yang cemerlang dan kompeten dalam bidang geospatial. Bagi pelajar yang mempunyai latar belakang pendidikan yang pelbagai, Jabatan Geoinformasi menawarkan tempat untuk memperkasa ilmu mereka, sama ada melalui kemasukan prasiswazah dari matrikulasi, STPM, asasi, atau diploma, atau melalui laluan pascasiswazah untuk pengajian lanjut.

Pensyarah dan kakitangan mengalu-alukan kedatangan pelajar dan penyelidik dari seluruh dunia untuk bersama-sama dalam mengembangkan horizon baru dalam bidang Geoinformasi. Jabatan Geoinformasi UTM terus komited untuk menjadi peneraju dalam penyelidikan berimpak tinggi dan menyediakan platform pendidikan yang holistik, sejajar dengan keperluan global yang semakin mendesak.

The Malay Archipelago: Malacca and Mount Ophir

“THE MALAY ARCHIPELAGO Alfred Russel Wallace” Excerpt From The Malay Archipelago Alfred Russel Wallace This material may be protected by copyright.

Terjemahan petikan dari “The Malay Archipelago” oleh Alfred Russel Wallace, pertama kali diterbitkan pada musim bunga 1869 dalam dua jilid oleh Macmillan (London).

BAB 3: Melaka dan Gunung Ledang

Julai hingga September, 1854

BURUNG DAN KEBANYAKAN SPESIES haiwan yang lain agak jarang ditemui di Singapura, maka saya meninggalkannya pada bulan Julai menuju ke Melaka, di mana saya menghabiskan lebih daripada dua bulan di pedalaman, dan membuat satu ekspedisi ke Gunung Ledang. Bandar Melaka yang lama dan indah terletak di sepanjang tebing sungai kecil, dan terdiri daripada jalan-jalan sempit yang dipenuhi kedai dan rumah kediaman, dihuni oleh keturunan Portugis dan orang Cina. Di pinggir bandar terdapat rumah-rumah pegawai Inggeris dan beberapa saudagar Portugis, tersembunyi dalam rerimbunan pokok kelapa dan pokok buah-buahan, yang daun-daunnya yang pelbagai dan cantik memberikan pemandangan yang menyegarkan mata serta teduhan yang sangat dihargai.

Kubu lama, Rumah Kerajaan yang besar, dan runtuhan sebuah katedral menjadi saksi kepada kekayaan dan kepentingan Melaka pada masa lampau, yang dahulunya merupakan pusat perdagangan di Timur, sama seperti Singapura kini. Berikut adalah deskripsi mengenainya oleh Linschott, yang menulis dua ratus tujuh puluh tahun yang lalu, dengan jelas menggambarkan perubahan yang telah dialaminya:—

“Melaka didiami oleh orang Portugis dan oleh penduduk tempatan, yang dipanggil Melayu. Orang Portugis mempunyai sebuah kubu di sini, seperti di Mozambique, dan tiada kubu di seluruh India, selepas Mozambique dan Ormuz, di mana kapten-kapten menjalankan tugas mereka dengan lebih baik daripada di sini. Tempat ini merupakan pasaran bagi seluruh India, China, Maluku, dan pulau-pulau lain di sekitarnya, dari semua tempat tersebut serta dari Banda, Jawa, Sumatra, Thailand, Pegu, Bengal, Coromandel, dan India, kapal-kapal tiba dan berlepas tanpa henti, membawa pelbagai jenis barang dagangan. Terdapat lebih ramai orang Portugis di tempat ini jika bukan kerana keadaan udara yang tidak sihat, yang memudaratkan bukan sahaja kepada pendatang asing, tetapi juga kepada penduduk tempatan. Oleh itu, semua yang tinggal di sini membayar ‘cukai’ kesihatan mereka, menderita daripada penyakit yang menyebabkan mereka kehilangan kulit atau rambut. Dan mereka yang terselamat menganggapnya sebagai satu keajaiban, yang menyebabkan ramai meninggalkan tempat ini, manakala keinginan besar untuk mendapatkan keuntungan mendorong yang lain untuk mempertaruhkan kesihatan mereka dan cuba menahan keadaan udara yang tidak sihat tersebut. Asal usul bandar ini, menurut penduduk tempatan, sangat kecil, hanya bermula dengan enam atau tujuh nelayan yang tinggal di sini kerana keadaan udara yang tidak sihat. Tetapi jumlah ini bertambah dengan kedatangan nelayan dari Thailand, Pegu, dan Bengal, yang datang dan membina sebuah bandar, serta mewujudkan satu bahasa yang unik, diambil dari cara bertutur yang paling halus dari pelbagai bangsa lain, sehingga bahasa Melayu kini merupakan yang paling canggih, tepat, dan terkenal di seluruh Timur. Nama Melaka diberikan kepada bandar ini, yang, kerana kedudukannya yang strategik, dalam masa yang singkat berkembang menjadi kaya sehingga tidak kalah dengan bandar-bandar dan wilayah paling berkuasa di sekitarnya. Penduduk tempatan, lelaki dan perempuan, sangat berbudi bahasa, dan dianggap paling mahir di dunia dalam hal peradaban dan kesantunan, serta sangat cenderung untuk mencipta dan menyanyikan puisi serta lagu cinta. Bahasa mereka popular di seluruh India, seperti bahasa Perancis di sini.”

Pada masa ini, kapal yang melebihi seratus tan jarang sekali memasuki pelabuhan Melaka, dan perdagangan di sana terbatas kepada beberapa hasil hutan kecil serta buah-buahan yang dihasilkan oleh pokok-pokok yang ditanam oleh orang Portugis lama untuk dinikmati oleh penduduk Singapura. Walaupun kawasan ini agak mudah diserang demam, ia kini tidak dianggap terlalu tidak sihat.

Penduduk Melaka terdiri daripada beberapa kaum. Orang Cina, yang terdapat di mana-mana, mungkin yang paling ramai, mengekalkan adat resam, budaya, dan bahasa mereka; orang Melayu asli pula adalah kelompok kedua terbesar, dan bahasa mereka menjadi lingua-franca (bahasa pengantara) di tempat ini. Seterusnya, terdapat keturunan Portugis—sebuah bangsa campuran yang dikatakan telah mengalami kemerosotan, tetapi mereka masih menggunakan bahasa ibunda mereka walaupun tatabahasanya telah banyak berubah; dan kemudian terdapat golongan pemerintah Inggeris dan keturunan Belanda, yang kesemuanya bertutur dalam bahasa Inggeris. Bahasa Portugis yang dituturkan di Melaka adalah fenomena filologi yang menarik. Kata kerja kebanyakannya telah kehilangan konjugasi, dan satu bentuk digunakan untuk semua ragam, kala, bilangan, dan orang. “Eu vai” digunakan untuk “Saya pergi,” “Saya telah pergi,” atau “Saya akan pergi.” Kata sifat juga telah kehilangan penamat feminin dan jamak, sehingga bahasa itu menjadi sangat ringkas, dan dengan penambahan beberapa perkataan Melayu, ia menjadi agak mengelirukan bagi mereka yang pernah mendengar bahasa Portugis tulen.

Dari segi pakaian, kaum-kaum ini sangat berbeza seperti dalam bahasa mereka. Orang Inggeris masih mengekalkan pakaian ketat berupa kot, rompi, dan seluar panjang, serta topi dan tali leher yang tidak menyenangkan; orang Portugis lebih cenderung memakai jaket ringan, atau lebih kerap hanya baju dan seluar; orang Melayu pula memakai baju nasional mereka dan sarung (sejenis kain yang diikat di pinggang) dengan seluar longgar; manakala orang Cina tidak pernah meninggalkan pakaian kebangsaan mereka, yang sebenarnya sangat sesuai untuk iklim tropika dari segi keselesaan mahupun penampilan. Seluar longgar dan baju putih separa kemeja separa jaket adalah contoh pakaian yang sesuai di kawasan latitud rendah ini.

Saya mengupah dua orang Portugis untuk menemani saya ke pedalaman; seorang sebagai tukang masak, dan seorang lagi untuk menembak dan mengulit burung, yang merupakan satu pekerjaan khusus di Melaka. Saya mula-mula tinggal selama dua minggu di sebuah kampung bernama Gading, di mana saya ditempatkan di rumah beberapa orang Cina yang telah memeluk agama Kristian, yang disyorkan kepada saya oleh mubaligh Jesuit. Rumah itu hanyalah sebuah pondok kecil, tetapi ia dijaga bersih, dan saya merasa cukup selesa. Tuan rumah saya sedang menanam lada dan gambir, dan di kawasan sekitar terdapat operasi pencucian bijih timah yang meluas, melibatkan lebih daripada seribu orang Cina. Timah diperoleh dalam bentuk bijirin hitam dari lapisan pasir kuarza, dan dicairkan menjadi jongkong di dalam relau tanah liat yang kasar. Tanah di sini nampak kurang subur, dan hutan sangat tebal dengan tumbuh-tumbuhan renek, serta tidak banyak serangga; tetapi sebaliknya, burung sangat banyak, dan saya diperkenalkan dengan khazanah ornitologi yang kaya di rantau Melayu.

Kali pertama saya melepaskan tembakan, saya berjaya menembak salah satu burung Melaka yang paling menarik dan cantik, iaitu burung “blue-billed gaper” (Cymbirhynchus macrorhynchus), yang dipanggil oleh orang Melayu sebagai “Burung Hujan.” Saiznya lebih kurang sebesar burung jalak, dengan bulu hitam dan warna merah wain yang kaya serta garis putih di bahunya, dan paruh yang sangat besar dan lebar berwarna biru kobalt di atas serta oren di bawah, manakala matanya berwarna hijau zamrud. Apabila kulitnya kering, paruhnya bertukar menjadi hitam kusam, tetapi burung itu tetap kelihatan cantik. Ketika baru ditembak, kontras antara biru terang dan warna bulunya sangat menarik dan menawan. Burung trogon dari Timur yang indah, dengan belakang coklat, sayap yang dihiasi dengan corak yang cantik, serta dada merah, juga berjaya saya dapatkan, begitu juga dengan burung barbet hijau besar (Megalæma versicolor)—burung pemakan buah yang mirip dengan burung toucan kecil, dengan paruh pendek lurus dan berbulu kasar, dan kepalanya dihiasi dengan tompok-tompok biru dan merah terang. Beberapa hari kemudian, pemburu saya membawa seekor lagi burung “green gaper” (Calyptomena viridis), yang kelihatan seperti burung “cock-of-the-rock” kecil, tetapi berwarna hijau terang sepenuhnya, dengan garis hitam halus di sayapnya. Burung pelatuk yang tampan dan burung raja udang yang ceria, burung cekur hijau dan coklat dengan muka merah baldu dan paruh hijau, burung merpati dada merah dan burung madu berkilau seperti logam, semuanya dibawa masuk hari demi hari, dan membuatkan saya sentiasa dalam keadaan teruja. Selepas dua minggu, salah seorang pembantu saya diserang demam, dan apabila pulang ke Melaka, pembantu yang lain serta saya sendiri turut dijangkiti penyakit yang sama. Dengan penggunaan kina yang banyak, saya cepat pulih, dan selepas mendapatkan pekerja baru, saya pergi ke rumah rehat kerajaan di Air Panas, ditemani oleh seorang pemuda tempatan yang meminati sejarah semula jadi.

Di Air Panas, kami mempunyai sebuah rumah yang selesa untuk menginap, dan terdapat banyak ruang untuk mengering dan menyimpan spesimen kami. Namun, kerana ketiadaan orang Cina yang rajin untuk menebang kayu, serangga agak jarang ditemui kecuali rama-rama, di mana saya berjaya membina koleksi yang sangat baik. Cara saya memperoleh seekor serangga yang cantik agak pelik dan menunjukkan betapa terhad dan tidak sempurna koleksi seorang pengembara. Pada suatu petang, ketika saya berjalan di jalan kegemaran saya di dalam hutan dengan membawa senapang, saya ternampak seekor rama-rama di atas tanah. Ia besar, cantik, dan baru bagi saya. Saya mendekatinya sebelum ia terbang. Saya perasan bahawa rama-rama itu hinggap di atas najis haiwan karnivor. Berfikir ia mungkin kembali ke tempat yang sama, keesokan harinya selepas sarapan, saya membawa jaring dan ketika saya menghampiri tempat itu, saya amat gembira melihat rama-rama yang sama hinggap di atas najis yang sama. Saya berjaya menangkapnya. Ia adalah spesies baru yang sangat cantik dan telah dinamakan oleh Encik Hewitson sebagai Nymphalis calydonia. Saya tidak pernah melihat spesimen lain, dan hanya selepas dua belas tahun berlalu, seekor lagi dihantar dari bahagian barat laut Borneo ke negara ini.

Setelah memutuskan untuk melawat Gunung Ledang, yang terletak di tengah-tengah semenanjung kira-kira lima puluh batu ke timur Melaka, kami mengupah enam orang Melayu untuk menemani kami dan membawa bagasi. Kami bercadang untuk tinggal sekurang-kurangnya seminggu di gunung, jadi kami membawa bekalan beras yang mencukupi, sedikit biskut, mentega, dan kopi, sedikit ikan kering dan sedikit brendi, dengan selimut, pakaian ganti, kotak serangga dan burung, jaring, senapang, dan peluru. Jarak dari Air Panas dianggarkan kira-kira tiga puluh batu. Perjalanan hari pertama kami melalui hutan yang jarang ditebang dan kampung Melayu, dan agak menyenangkan. Pada malam itu, kami bermalam di rumah seorang ketua Melayu, yang meminjamkan kami serambi rumahnya dan memberi kami seekor ayam dan beberapa biji telur. Keesokan harinya, keadaan sekeliling semakin liar dan berbukit. Kami melalui hutan yang luas, melalui jalan yang sering sampai ke lutut dengan lumpur, dan kami sangat terganggu oleh pacat yang terkenal di kawasan ini. Makhluk kecil ini menghuni daun dan tumbuhan di tepi jalan, dan apabila seorang pengembara lalu, mereka akan memanjangkan tubuh mereka, dan jika tersentuh pada pakaian atau badan, mereka akan berpindah dari daun dan melekat pada badan.

Mereka kemudian merayap ke kaki, kaki, atau bahagian tubuh yang lain dan menghisap darah, di mana gigitan pertama jarang terasa semasa kita sibuk berjalan. Ketika mandi pada waktu petang, biasanya kami mendapati setengah dozen atau lebih pacat pada tubuh kami, kebanyakannya di kaki, tetapi kadang-kadang di badan, dan saya pernah digigit di leher, tetapi nasib baik pacat itu tidak terkena urat leher. Terdapat banyak spesies pacat hutan ini. Semuanya kecil, tetapi ada yang cantik dengan garis-garis kuning terang. Mereka mungkin menumpang pada rusa atau haiwan lain yang sering melalui jalan hutan, dan dengan itu memperoleh kebiasaan yang aneh iaitu memanjangkan badan apabila terdengar bunyi langkah atau dedaun yang berkarat. Pada awal petang, kami tiba di kaki gunung dan berkhemah di tepi aliran air yang jernih, di mana tebingnya ditumbuhi paku-pakis. Seorang Melayu tertua kami sudah biasa menembak burung di kawasan ini untuk peniaga di Melaka, dan pernah ke puncak gunung. Sementara kami berseronok menembak dan memburu serangga, dia pergi bersama dua orang lagi untuk membersihkan laluan bagi pendakian kami pada keesokan harinya.

Awal pagi keesokan harinya, selepas sarapan, kami mula mendaki dengan membawa selimut dan bekalan kerana kami bercadang bermalam di gunung. Selepas melalui sedikit hutan yang berbelit-belit dan belukar paya di mana lelaki kami telah membersihkan jalan, kami keluar ke hutan yang tinggi dan bersih dari tumbuhan renek, membolehkan kami berjalan dengan bebas. Kami mendaki dengan mantap pada cerun sederhana selama beberapa batu, dengan gaung yang dalam di sebelah kiri kami. Selepas itu, kami menyeberangi dataran rata atau bahu gunung, dan seterusnya mendaki cerun yang lebih curam dengan hutan yang lebih lebat sehingga kami tiba di Padang-batu atau padang batu, satu tempat yang sering diceritakan tetapi sukar diterangkan dengan jelas. Kami mendapati ia adalah cerun batu yang curam, membentang sepanjang sisi gunung lebih jauh daripada yang dapat dilihat. Sebahagian daripadanya kosong, tetapi di tempat yang retak dan berfissur, tumbuh tumbuhan yang sangat subur, di mana periuk kera adalah yang paling menarik perhatian. Tumbuhan yang luar biasa ini jarang tumbuh dengan baik di rumah panas kita, dan di sini mereka tumbuh sehingga separuh memanjat, dengan periuk yang beraneka bentuk dan saiz yang tergantung dari daun mereka, sentiasa memikat kekaguman kami dengan saiz dan kecantikannya. Beberapa pokok konifer dari genus Dacrydium pertama kali muncul di sini, dan di semak-semak di atas permukaan batu yang berbatu, kami berjalan melalui belukar paku-pakis indah Dipteris horsfieldii dan Matonia pectinata, yang mempunyai pelepah besar berbentuk telapak tangan yang tumbuh pada batang yang tinggi dan langsing setinggi enam atau lapan kaki. Matonia adalah yang paling tinggi dan paling elegan, dan hanya diketahui wujud di gunung ini, dan tidak satu pun daripadanya lagi diperkenalkan ke rumah panas kita.

Sangat mengagumkan untuk keluar dari hutan yang gelap, sejuk, dan teduh, di mana kami mendaki sejak pagi, ke padang batu yang terbuka dan panas ini, di mana kami seolah-olah melangkah dari kawasan rendah ke tumbuh-tumbuhan alpine dalam sekelip mata. Ketinggiannya, seperti yang diukur oleh simpiesometer, adalah kira-kira 2,800 kaki. Kami diberitahu bahawa kami akan menemui air di Padang-batu, tetapi setelah mencarinya, kami tidak menjumpainya dan menjadi sangat dahaga. Akhirnya, kami beralih kepada periuk kera, tetapi air dalam periuk tersebut (sekitar setengah pint setiap satu) penuh dengan serangga dan kelihatan tidak menyelerakan. Namun, setelah merasainya, kami mendapati ia boleh diminum walaupun sedikit suam, dan kami semua menghilangkan dahaga kami dari jug semula jadi ini. Setelah berjalan lebih jauh, kami menemui hutan lagi, tetapi ia lebih kerdil dan lebih terhad daripada di bawah, dan setelah melalui rabung dan menuruni lembah, kami tiba di puncak yang dipisahkan dari puncak sebenar gunung oleh sebuah gaung yang agak besar. Di sini, pengangkut barang kami menyerah kalah dan mengaku tidak dapat membawa beban mereka lebih jauh; dan sememangnya pendakian ke puncak tertinggi sangat curam. Namun, di tempat kami berhenti, tiada air, sedangkan di puncak tertinggi terdapat mata air, jadi kami memutuskan untuk meneruskan perjalanan tanpa mereka dan hanya membawa barang yang diperlukan. Kami membahagikan selimut dan bekalan makanan di kalangan kami, lalu meneruskan perjalanan hanya dengan orang tua Melayu itu dan anaknya.

Setelah kami menuruni pelana antara dua puncak, kami mendapati pendakian seterusnya sangat mencabar disebabkan cerunnya yang sangat curam sehingga sering memerlukan kami memanjat menggunakan tangan. Kawasan tanah ditutupi tumbuh-tumbuhan renek dan lumut setinggi lutut di atas lapisan daun yang mereput serta batu-batan yang tidak rata. Pendakian ini memakan masa selama satu jam untuk sampai ke satu cerun kecil yang terletak betul-betul di bawah puncak, di mana terdapat formasi batu tergantung yang menyediakan tempat berteduh yang selesa, serta kolam kecil yang mengumpulkan air yang menitis. Di sini kami meletakkan bebanan kami, dan selepas beberapa minit, kami berjaya berdiri di puncak Gunung Ledang pada ketinggian 4,000 kaki dari aras laut. Puncaknya adalah satu dataran berbatu kecil yang ditumbuhi rododendron dan tumbuh-tumbuhan renek lain. Pada waktu petang, langit cerah dan pemandangan yang terbentang adalah rangkaian bukit dan lembah yang semuanya dilitupi hutan yang luas serta sungai-sungai yang berliku-liku melaluinya. Namun begitu, pemandangan hutan dari jauh kelihatan agak monoton, dan tiada gunung tropika yang saya daki menawarkan panorama yang menyamai pemandangan dari Gunung Snowdon, sementara pemandangan di Switzerland jauh lebih mengagumkan. Ketika memasak kopi, saya mengambil bacaan menggunakan termometer takat didih dan simpiometer, dan kemudian kami menikmati makan malam kami sambil menyaksikan pemandangan yang luas di hadapan kami. Malam itu tenang dan suhunya sangat sederhana. Setelah menyediakan tempat tidur daripada ranting dan dahan, kami meletakkan selimut di atasnya dan tidur dengan selesa. Pengusung barang kami mengikuti selepas berehat, hanya membawa beras untuk dimasak, dan bernasib baik kami tidak memerlukan barang-barang lain yang ditinggalkan mereka. Pada pagi hari berikutnya, saya sempat menangkap beberapa spesies rama-rama dan kumbang, manakala rakan saya menemui beberapa spesimen cengkerang darat. Selepas itu, kami memulakan perjalanan turun dengan membawa spesimen paku-pakis dan periuk kera dari kawasan Padang-batu.

Lokasi perkhemahan awal kami di kaki gunung terasa sangat suram, jadi kami memutuskan untuk memilih satu lagi tapak di kawasan berpaya berhampiran sungai yang ditumbuhi tumbuh-tumbuhan Zingiberaceae. Kawasan itu mudah dibersihkan untuk membuat tempat perkhemahan. Di sini, pekerja kami membina dua pondok kecil tanpa dinding yang sekadar melindungi kami dari hujan. Kami tinggal di sini selama seminggu, menjalankan aktiviti berburu, menangkap serangga, dan menjelajah kawasan hutan di kaki gunung. Kawasan ini merupakan habitat burung kuang besar, dan kami sering mendengar suaranya. Apabila saya meminta seorang lelaki tua Melayu untuk menembak seekor burung tersebut, dia menjelaskan bahawa walaupun dia telah berburu di hutan ini selama dua puluh tahun, dia tidak pernah menembak seekor pun burung kuang besar, malah tidak pernah melihatnya melainkan selepas ia ditangkap. Burung ini sangat pemalu dan berhati-hati, bergerak dengan pantas di kawasan hutan yang paling padat, menyebabkan ia sukar untuk didekati. Warna suramnya yang kelihatan cantik di muzium sebenarnya sangat serasi dengan daun-daun mati di kawasan habitatnya, menjadikannya sukar untuk dilihat. Semua spesimen yang dijual di Melaka biasanya ditangkap menggunakan perangkap, dan walaupun pemberi maklumat saya tidak pernah menembaknya, dia telah menangkap banyak burung ini dengan perangkap.

Di kawasan ini, harimau dan badak sumbu masih ditemui, dan beberapa tahun lalu, gajah juga banyak terdapat di sini, walaupun kini populasi mereka telah berkurangan. Kami menemui beberapa longgokan najis yang kelihatan seperti milik gajah, serta jejak badak sumbu, tetapi tidak melihat sebarang haiwan tersebut. Bagaimanapun, kami terus menyalakan api sepanjang malam sekiranya haiwan-haiwan tersebut datang menghampiri, dan dua orang pekerja kami mendakwa bahawa mereka sempat melihat seekor badak sumbu pada satu hari. Setelah bekalan beras kami habis dan kotak spesimen kami penuh, kami kembali ke Air Panas, dan beberapa hari kemudian meneruskan perjalanan ke Melaka, sebelum akhirnya ke Singapura. Gunung Ledang terkenal dengan risiko demam, dan rakan-rakan kami sangat terkejut dengan keputusan kami untuk tinggal begitu lama di kaki gunung tersebut. Walau bagaimanapun, kami semua bernasib baik kerana tiada seorang pun mengalami masalah kesihatan, dan saya akan sentiasa mengenang perjalanan ini sebagai pengalaman pertama saya mendaki gunung di kawasan tropika Timur.

Catatan ini ringkas disebabkan oleh kehilangan beberapa surat peribadi dan buku catatan, serta kertas kerja mengenai Melaka dan Gunung Ledang yang dihantar kepada Persatuan Geografi Diraja tetapi tidak dibaca atau diterbitkan kerana kesibukan pada akhir sesi, dan manuskripnya kini tidak lagi dapat dikesan. Namun, saya tidak terlalu menyesal, kerana banyak karya telah ditulis tentang kawasan ini. Saya juga memang berniat untuk tidak memberikan terlalu banyak perincian tentang perjalanan saya di kawasan barat yang lebih dikenali di kepulauan ini, supaya saya boleh memberi lebih ruang kepada kawasan yang lebih terpencil, yang kurang mendapat perhatian dalam penulisan bahasa Inggeris.

The Role of Generative AI in Transforming Programming Practices

GenAI

Generative AI (GenAI) has emerged as a transformative tool in the field of software development, extending its capabilities beyond text generation to the creation of computer code. This advancement aligns with the understanding that computer code is essentially another form of language, making it possible for AI models to aid developers in their work. GenAI can accelerate various programming tasks, thereby enhancing the efficiency of software development. Its ability to convert natural language instructions into executable code and provide real-time code suggestions has the potential to reshape the role of developers in the industry. However, the question remains: how effective is GenAI in producing quality code? According to a study conducted by Alphabet’s DeepMind, their AlphaCode model performed on par with novice coders who had about six months to a year of training (Metz, 2022). This marks a significant milestone for AI, and as the technology continues to improve, it is expected that these models will soon match the capabilities of more seasoned programmers.

One of the most promising aspects of GenAI is its accessibility. Even individuals with minimal coding experience can use GenAI to write functional code, democratizing the process of software development. This makes GenAI particularly useful for non-programmers who need to build applications but lack the necessary technical expertise. The model’s ability to translate plain language into programming code lowers the barriers to entry for software creation. Furthermore, GenAI can assist in critical development tasks such as gathering software requirements, reviewing code for inconsistencies, and even fixing bugs. For example, during the requirement-gathering phase, GenAI can generate a comprehensive list of functional needs based on user inputs, ensuring that no key elements—like security—are overlooked (Brown, 2023). Additionally, GenAI’s real-time code completion capabilities help developers by suggesting code snippets as they type, significantly speeding up the process and minimizing human errors.

GenAI also contributes to the testing and maintenance of software by automating several phases of the software development lifecycle. It can review existing code, propose optimizations, and generate test cases to ensure the code meets performance and security standards. This predictive capability is already being explored by companies like Dynatrace, which aims to use AI to anticipate system failures before the code goes into production. In a recent interview, Dynatrace’s Chief Technology Officer, Bernd Greifeneder, highlighted that their AI model is designed to predict potential system failures, enabling developers to fix problems before they cause issues in real-time applications (ZDNet, 2023). This “predictive AI” concept, if fully realized, could represent a paradigm shift in software development, where preventing faults becomes the norm rather than reacting to them post-launch.

Despite its many advantages, the integration of GenAI into programming is not without challenges. Issues such as AI hallucinations, where the model generates plausible but incorrect code, as well as concerns over data security and intellectual property, must be addressed. There is a risk that proprietary code may be inadvertently used to train AI models, exposing sensitive information to external parties. Therefore, strong safeguards and human oversight are essential to mitigate these risks (Kaur & Singh, 2023). Additionally, while GenAI can automate many tasks, it is unlikely to replace software developers entirely. Instead, the role of developers is expected to evolve, with AI serving as a co-pilot that supports, rather than supplants, human expertise.

The future of programming will likely involve a closer collaboration between developers and AI, much like how other professionals such as journalists and doctors are increasingly working alongside AI tools. High-level developers, whose responsibilities often extend beyond just coding, will benefit from GenAI’s ability to handle repetitive tasks, allowing them to focus on more complex problem-solving activities. In fact, studies have shown that developers spend only around 20% of their time writing code, with the remaining time dedicated to tasks like project management, requirement gathering, and testing (Williams, 2023). GenAI’s capacity to generate, review, and test code ensures that the time developers spend coding is more productive, and it reduces the burden of mundane tasks such as internal documentation.

Moreover, GenAI’s impact extends beyond professional developers. Everyday users can now leverage these tools to create software without any prior knowledge of programming languages. This accessibility could lead to an increase in innovation, as individuals outside the tech industry can use AI to develop apps or services tailored to their needs. However, while GenAI tools are highly capable, they are not infallible. Instances of overconfidence in incorrect code outputs demonstrate that AI should be used as a supplement rather than a replacement for human judgment in software development (Park, 2022).

GenAI represents a major shift in how software development is approached. By automating repetitive coding tasks and improving efficiency, GenAI serves as a valuable tool that enhances the productivity of developers and makes programming more accessible to non-experts. However, as with any emerging technology, ethical and practical challenges remain, necessitating human oversight to ensure that the benefits of GenAI are fully realized. As the technology continues to evolve, it is poised to play an increasingly important role in the future of software development.


References

  • Brown, J. (2023). The evolving role of AI in software engineering. IEEE Software, 40(2), 15-21.
  • Kaur, A., & Singh, P. (2023). Challenges and opportunities in AI-driven software development. ACM Computing Surveys, 55(6), 1-27.
  • Metz, C. (2022). AlphaCode’s impact on novice programmers. The New York Times. Retrieved from https://www.nytimes.com
  • Park, H. (2022). AI hallucinations in coding: Risks and solutions. Journal of Artificial Intelligence Research, 18(4), 53-70.
  • Williams, M. (2023). The changing landscape of software development. ACM Queue, 21(3), 24-31.

Mengimbangi Peranan Universiti dan Industri dalam Pembangunan Teknologi

campus

Universiti sering dianggap sebagai pusat inovasi dan pembangunan teknologi. Di sinilah teori-teori baru diasah, penyelidikan mendalam dijalankan, dan teknologi baru direka serta diuji. Dalam konteks ini, universiti sewajarnya memainkan peranan sebagai pelopor dalam pembangunan teknologi. Berbanding industri yang fokus kepada keuntungan, universiti berfungsi sebagai landasan untuk penyelidikan jangka panjang tanpa batasan komersial yang ketara. Oleh itu, ada asas untuk menyatakan bahawa universiti perlu lebih maju dari segi teknologi, kerana mereka membentuk dan meneroka konsep yang kemudiannya boleh digunakan oleh industri.

Namun, realitinya tidak selalu begitu. Universiti kadang-kadang ketinggalan dalam teknologi praktikal yang digunakan oleh industri, disebabkan oleh beberapa faktor seperti bajet yang terhad, birokrasi, serta ketiadaan hubungan yang erat antara akademia dan industri. Universiti sering kali tertinggal dari sudut aplikasi kerana teknologi baru dalam industri berkembang pesat disebabkan persaingan pasaran dan dorongan untuk inovasi yang mendatangkan keuntungan. Contohnya, teknologi seperti kecerdasan buatan (AI), pembelajaran mesin, dan Internet Benda (IoT) berkembang dengan pesat di syarikat-syarikat teknologi sebelum universiti dapat membina kurikulum atau sistem pendidikan yang relevan dan menyeluruh.

Salah satu isu yang sering diketengahkan adalah jurang antara apa yang diajar di universiti dan keperluan industri sebenar. Banyak program universiti cenderung mengutamakan aspek teori berbanding aplikasi, menjadikan graduan kurang bersedia untuk menghadapi cabaran teknologi terkini di tempat kerja. Industri sering kali memerlukan teknologi praktikal yang dapat menyelesaikan masalah dengan segera, sedangkan universiti mungkin terperangkap dalam kajian teori yang memerlukan masa yang lama untuk berkembang menjadi sesuatu yang berguna dari segi komersial.

Namun, perbincangan ini harus adil, kerana misi utama universiti adalah untuk menghasilkan ilmu pengetahuan baru dan membangun teknologi untuk jangka masa panjang, bukan sekadar mengikuti arus perkembangan teknologi semasa. Penyelidikan di universiti selalunya lebih fundamental dan tidak serta-merta mempunyai aplikasi komersial, tetapi ia adalah asas kepada inovasi teknologi yang kemudian dikomersialkan oleh industri.

Untuk menyelesaikan masalah jurang teknologi antara universiti dan industri, kerjasama strategik perlu ditingkatkan. Universiti boleh memainkan peranan yang lebih penting dalam pembangunan teknologi melalui penyelidikan kolaboratif bersama industri. Ini dapat memastikan teknologi yang sedang dibangunkan di universiti selaras dengan keperluan semasa industri, sambil universiti juga dapat mengeksplorasi teknologi masa depan yang masih belum diterokai oleh industri. Contoh yang baik ialah model pembangunan inkubator teknologi yang melibatkan penyelidik akademik dan syarikat untuk membangunkan prototaip teknologi yang boleh diuji dan dikomersialkan.

Walaupun begitu, wujud masalah lain apabila kurangnya insentif bagi pensyarah dan penyelidik untuk terlibat dalam kerjasama industri, kerana sistem penilaian universiti lebih mengutamakan penerbitan akademik berbanding impak ekonomi atau teknologi yang dihasilkan. Akibatnya, teknologi yang dibangunkan di universiti mungkin terlewat memasuki pasaran atau tidak memenuhi keperluan industri semasa.

Isu lain yang mempengaruhi keupayaan universiti untuk mengungguli industri dari segi teknologi adalah keterbatasan sumber kewangan. Pembiayaan untuk penyelidikan dan pembangunan teknologi di universiti, khususnya di negara membangun, sering kali tidak mencukupi untuk membiayai pembelian teknologi terkini atau membangunkan makmal penyelidikan yang canggih. Sebaliknya, syarikat-syarikat besar mampu membiayai penyelidikan dan pembangunan mereka sendiri dan membeli peralatan teknologi terkini.

Universiti sepatutnya memainkan peranan lebih besar sebagai pembangun teknologi, bukan sekadar pengguna. Namun, realiti menunjukkan bahawa terdapat beberapa cabaran yang perlu diatasi, termasuk jurang antara teori dan aplikasi, kekurangan kerjasama dengan industri, dan kekangan pembiayaan. Walaupun ada beberapa universiti yang mampu mengungguli industri dari segi pembangunan teknologi (misalnya dalam bidang penyelidikan fundamental), kebanyakan universiti memerlukan pendekatan yang lebih strategik dan kolaboratif untuk memastikan teknologi mereka sentiasa relevan dan terkehadapan.

Universiti Sebagai Pelopor Teknologi dan Pusat Inovasi

building

Universiti adalah institusi yang dianggap sebagai benteng utama dalam pembangunan ilmu, teknologi, dan inovasi. Sejarah membuktikan bahawa universiti sering kali menjadi pelopor dalam bidangnya, mencipta teknologi baharu, dan menyediakan penyelesaian kepada pelbagai cabaran global. Namun, peranan ini kini dicabar oleh pelbagai faktor, terutamanya apabila universiti semakin bergantung kepada industri untuk sumber kewangan, teknologi, dan perkakasan. Sebaliknya, sepatutnya industri bergantung kepada universiti sebagai pusat kecemerlangan dan inovasi. Artikel ini akan mengupas pelbagai masalah ini serta membincangkan penyelesaian bagi mengembalikan universiti ke tempat yang selayaknya sebagai pusat rujukan utama.

Pada asasnya, universiti mesti memainkan peranan sebagai pelopor dalam bidang akademik dan teknologi. Ia seharusnya menjadi penggerak utama dalam membangunkan teknologi dan pendekatan baharu yang mempengaruhi industri dan masyarakat. Namun, apa yang kita saksikan hari ini ialah keadaan yang sebaliknya—di mana universiti perlu “berlajar” daripada industri, dan bukan sebaliknya. Fenomena ini timbul disebabkan oleh beberapa faktor, termasuk kekurangan dana, keterbatasan dalam pemilikan teknologi terkini, serta hubungan tidak seimbang antara universiti dan pihak industri.

Kekurangan sumber kewangan telah menjadi masalah yang semakin parah bagi kebanyakan universiti. Ketidakcukupan dana menyebabkan universiti terpaksa mengemis kepada pihak industri untuk mendapatkan bantuan dalam bentuk dana, perisian, dan perkakasan. Ini seterusnya mencetuskan ketergantungan terhadap pihak luar dan menghalang universiti daripada bertindak secara bebas sebagai pencipta teknologi.

Sebahagian industri pula menggunakan situasi ini sebagai peluang untuk menjadikan universiti sebagai tempat melupuskan perisian dan perkakasan lama yang tidak lagi relevan di dunia perniagaan. Sedangkan, universiti memerlukan teknologi terkini untuk membina keupayaan staf dan pelajar. Ini mencipta satu keadaan di mana universiti tidak dapat bersaing dengan industri dalam menyediakan persekitaran pengajaran dan pembelajaran yang moden dan setara dengan keperluan pasaran kerja.

Satu lagi isu kritikal ialah penggunaan perisian tanpa lesen yang sah oleh staf dan pelajar di universiti. Keadaan ini berlaku kerana universiti tidak mampu menyediakan perisian komersial yang terkini disebabkan oleh kekurangan kewangan. Walaupun kerajaan dan universiti telah menggalakkan penggunaan perisian sumber terbuka, ia tidak mencukupi untuk memenuhi keperluan kemahiran asas yang diperlukan dalam industri. Perisian sumber terbuka memang mempunyai kelebihan dari segi kos dan keterbukaan, tetapi kebanyakan syarikat besar dan sektor industri masih menggunakan perisian komersial dalam operasi harian mereka.

Perkara ini menimbulkan satu dilema di kalangan graduan yang memasuki pasaran kerja tanpa pengetahuan asas tentang perisian komersial yang kritikal dalam industri. Tanpa kemahiran ini, graduan universiti mungkin sukar bersaing dengan calon lain yang sudah mahir dalam penggunaan perisian tersebut. Oleh itu, walaupun inisiatif untuk menggunakan perisian sumber terbuka adalah baik, universiti masih perlu mengambil langkah untuk memastikan graduan mereka mampu menguasai perisian komersial yang sering digunakan di industri.

Memperkukuh sumber kewangan universiti merupakan langkah penting untuk memastikan autonomi dan kemampanan institusi pengajian tinggi. Kerajaan dan universiti harus mencari pelbagai inisiatif bagi menambah dana, termasuk kerjasama strategik dengan industri, namun tanpa terlalu bergantung kepada mereka. Salah satu cara untuk mencapai matlamat ini adalah melalui penyelidikan yang berkaitan dengan isu semasa atau cabaran yang dihadapi oleh industri, di mana universiti berfungsi sebagai penyedia penyelesaian inovatif. Selain itu, dana penyelidikan boleh diperkukuh melalui inisiatif kerjasama antarabangsa, sama ada dengan organisasi luar negara atau melalui projek-projek yang mendapat pembiayaan global.

Universiti juga perlu lebih berhati-hati dan strategik dalam menerima teknologi daripada pihak industri. Teknologi yang diterima harus melalui penilaian teliti untuk memastikan ia relevan dan dapat meningkatkan keupayaan pengajaran serta pembelajaran. Teknologi yang usang atau tidak lagi digunakan di dunia industri harus ditolak atau tidak diterima tanpa kajian mendalam. Peralihan teknologi seperti ini penting untuk menjamin universiti terus mengikuti perkembangan teknologi terkini dan tidak ketinggalan dalam arus perubahan industri.

Selain itu, universiti perlu mengimbangkan latihan dalam penggunaan perisian komersial dan sumber terbuka. Langkah ini dapat dilakukan melalui kerjasama dengan pembekal perisian komersial yang menawarkan lesen pendidikan dengan kos yang lebih rendah. Universiti juga boleh menyediakan kursus jangka pendek untuk memberi pendedahan kepada pelajar dan staf mengenai penggunaan kedua-dua jenis perisian, bagi memastikan graduan mereka mempunyai kemahiran yang bersesuaian dengan keperluan industri.

Pembangunan perisian dalaman juga perlu diberi perhatian. Universiti harus meningkatkan kemampuan untuk membangunkan perisian melalui pusat penyelidikan dan pembangunan (R&D). Ini akan membolehkan universiti mencipta perisian yang disesuaikan dengan keperluan pengajaran dan penyelidikan yang lebih moden. Dengan pendekatan ini, universiti tidak terlalu bergantung kepada perisian komersial yang mungkin mahal, tetapi sebaliknya membina keupayaan teknologi dalaman yang boleh menyokong keperluan akademik.

Dalam jangka masa panjang, universiti perlu mengubah budaya akademiknya dengan memberi tumpuan kepada inovasi dan pembangunan teknologi yang boleh diterjemahkan kepada aplikasi praktikal. Dengan cara ini, universiti bukan sahaja menjadi pusat penyebaran ilmu, tetapi juga pusat penciptaan teknologi baharu yang boleh digunakan oleh pihak industri. Universiti perlu mengambil peranan sebagai pemimpin dalam inovasi teknologi untuk memastikan mereka relevan dan berdaya saing dalam dunia akademik dan industri.

Kesimpulannya, untuk menjadikan universiti sebagai pelopor teknologi dan pusat inovasi, pelbagai langkah strategik perlu diambil. Ini termasuk memperkukuh sumber kewangan, menilai teknologi yang diterima, menyediakan latihan yang seimbang antara perisian komersial dan sumber terbuka, membangunkan perisian dalaman, serta mengubah budaya akademik agar lebih inovatif. Hanya dengan pendekatan ini, universiti akan dapat mengembalikan peranan mereka sebagai pusat kecemerlangan dan inovasi yang unggul.

Implementing a Comprehensive Atlas Documenting the Life of Prophet Muhammad

atlas arabia

By Shahabuddin Amerudin

Introduction

The documentation of the Prophet Muhammad’s life has historically been preserved through manuscripts, biographies (Sirah), and religious texts such as Hadith collections. However, modern technological advances, particularly Geographic Information Systems (GIS) and digital visualization tools, allow for a more dynamic, immersive, and educational method of mapping these significant events and locations. This paper proposes a detailed plan for the development of a comprehensive atlas documenting the life of Prophet Muhammad, blending historical research with cutting-edge geospatial technologies and interactive educational tools.

1. Research and Data Collection

Team Formation

The foundation of this project lies in assembling a multidisciplinary team. This team would consist of historians, Islamic scholars, GIS specialists, and cartographers. Collaboration with research institutions, universities, and Islamic history centers is crucial to ensure historical accuracy. According to recent trends in academic collaboration, involving specialized experts from various disciplines enhances the credibility of the project (Kamel, 2023). This collaboration not only helps in accurate data collection but also fosters an environment of peer review and validation.

Source Verification

The success of the project hinges on the careful selection and verification of sources. Historical accuracy can be achieved by relying on original and authenticated Islamic texts. These sources include collections of Hadith, the Prophet’s biographies, and primary Islamic historical literature. A rigorous verification process must be followed, whereby historians and scholars cross-reference these sources to establish a firm chronological and geographical framework for mapping the Prophet’s life.

As Sardar (2022) emphasized in his research on historical data digitization, source verification is essential for ensuring that modern interpretations do not deviate from established historical facts. This method of verification allows for precise mapping of key locations in the Prophet’s life, such as his birthplace in Makkah, his migration route (Hijra) to Madinah, and sites of important events like the Battle of Badr.

Data Validation

Historical data should undergo a strict validation process in collaboration with academic institutions and Islamic research centers. This step will ensure that the historical locations and events are accurately reflected in the maps. Ongoing research into ancient Islamic landmarks and pilgrimage routes can also contribute to refining the geographical scope of the atlas. Recent developments in geospatial archaeology have shown the importance of cross-validating historical findings with modern geographic data (Bollati et al., 2023).

2. Geospatial Mapping

Geographic Coordinates

Once the historical events are verified, determining the precise or approximate geographic coordinates is the next crucial step. GIS technologies can overlay historical data on modern maps. Historical landmarks, including locations from the Prophet’s early life, migration, and key battles, can be pinpointed using satellite imagery and historical texts. According to Muqaddam (2023), GIS mapping has proven essential in projects involving ancient pilgrimage routes, offering visual clarity for historical timelines.

Satellite Imagery

Utilizing satellite imagery tools like Google Earth and more advanced data sets from satellites enables the project to capture detailed modern views of ancient landscapes. This imagery, combined with historical data, enhances the accuracy of the atlas. Satellite images also provide a unique perspective for visualizing how key locations have evolved over time, making the Prophet’s journey more relatable to contemporary audiences.

Integration of Historical Data with Maps

Platforms like ArcGIS and QGIS serve as powerful tools to overlay historical data on modern maps. By using time-based layers, events such as the migration to Madinah or battles like Badr and Uhud can be visualized chronologically. According to Al-Qadi (2024), integrating GIS with historical research enables more precise documentation, allowing for dynamic mapping of Islamic history.

Precision Mapping

Accurate topographical data is critical for reflecting the landscape during the Prophet’s lifetime. Modern GIS tools offer precise topographical mapping that captures the contours and features of the terrain as it might have existed during the time of the Prophet. This allows for the creation of maps that mirror the physical and environmental context of the events.

3. Technology Integration

Interactive Online Platform

An interactive web-based platform will be a key deliverable, offering users the ability to explore maps and events interactively. Features such as zooming into specific locations, viewing timelines, and accessing supplementary information about each site will be essential. Recent projects like the Mapping Makkah initiative demonstrate how such platforms can be powerful educational tools (Rizvi, 2022).

Mobile Application

To increase accessibility, a mobile application mirroring the web platform’s functionality should be developed. The app could incorporate geolocation features for users traveling to historical sites, allowing them to access real-time data and visualizations on the Prophet’s journey. Mobile-based platforms offer wide accessibility, making the project globally relevant.

Database and Backend Management

A robust database system, such as MySQL combined with PostGIS for spatial data, should be implemented to manage the extensive geospatial and historical data. This ensures that the data is stored securely, can be easily queried, and is scalable for future updates. PostGIS adds spatial data management capabilities to traditional database systems, allowing for efficient handling of geospatial queries (Johnson, 2023).

4. Visualization and Educational Tools

Historical Diagrams and Visual Pathways

Key events in the Prophet’s life can be transformed into visual diagrams and pathways. Software like Adobe Illustrator can be used for designing diagrams, while tools like D3.js can offer interactive visualizations that users can explore online. Research has shown that visual learning aids are essential in historical education, offering deeper engagement (Nour, 2023).

Maps, Illustrations, and Multimedia

Static and interactive maps will visualize the Prophet’s life in stages. Images, diagrams, and even 3D models of historical sites should accompany these maps to create a more immersive experience. As highlighted by Shahid (2024), integrating multimedia with GIS projects enhances user engagement by providing various layers of context.

Exhibitions and Publications for Children

To engage younger audiences, simplified maps and illustrations will be developed. This child-friendly material will be designed to introduce key aspects of the Prophet’s biography in an age-appropriate format. Using storytelling and simplified diagrams, children will be able to learn about the Prophet’s life in an engaging and relatable way.

5. Collaboration and Conferences

Institutional Collaborations

Partnering with Islamic universities, research centers, and international institutions will provide the project with a broader scholarly perspective. Peer reviews and collaborative research will ensure that the atlas maintains high academic standards. Conferences and workshops involving global scholars will foster discussion on Islamic landmarks and how modern technology can aid their preservation.

International Conference

An international conference dedicated to the findings and significance of this project will allow scholars worldwide to discuss Islamic history and its preservation. As noted by Abdullah (2022), international collaboration fosters broader knowledge sharing and opens new avenues for interdisciplinary research.

6. Publication and Dissemination

Print and Digital Atlases

Both print and digital versions of the atlas will be published, ensuring that the project reaches a wide audience. The digital version will include interactive maps, while the print version will provide a scholarly reference for academic institutions.

7. Public Engagement

Exhibitions and Events

Exhibitions using virtual and augmented reality (VR/AR) can be organized, allowing visitors to virtually “experience” the Prophet’s journey. Virtual exhibits can attract a wider audience, offering an immersive experience that showcases Islamic history (Ahmed, 2023).

Social Media Campaigns

To raise awareness, social media campaigns on platforms like YouTube, Instagram, and Twitter can share visuals, lectures, and behind-the-scenes insights from the project. As highlighted by Khayat (2024), social media plays a vital role in public history projects by engaging younger, tech-savvy audiences.

Conclusion

The comprehensive atlas documenting the life of Prophet Muhammad represents a fusion of historical scholarship and modern technology. By using GIS, satellite imagery, and interactive tools, the project will offer an immersive educational experience that not only preserves Islamic heritage but also brings it to life for a global audience.

References

Abdullah, I. (2022). Collaborating for preservation: Islamic historical landmarks and international partnerships. Journal of Islamic History, 45(3), 234-256.

Ahmed, Z. (2023). Virtual experiences in Islamic history education. Digital Heritage, 22(1), 112-126.

Al-Qadi, F. (2024). GIS in Islamic historical research: Methods and case studies. Islamic Geospatial Journal, 10(4), 87-104.

Bollati, L., et al. (2023). Cross-validating historical data with geospatial technology. Journal of Geospatial Archaeology, 15(2), 130-146.

Johnson, M. (2023). Database management in historical GIS projects: Best practices. Digital Humanities, 33(2), 145-164.

Kamel, R. (2023). Interdisciplinary research in Islamic history. Islamic Studies Quarterly, 12(2), 190-210.

Khayat, A. (2024). Social media and public history: Engaging younger audiences. Arab Social Studies Review, 18(1), 44-60.

Muqaddam, S. (2023). Mapping ancient pilgrimage routes using GIS. International Journal of Historical Mapping, 9(1), 57-73.

Nour, Y. (2023). The impact of visual learning tools in historical education. Educational Technology Journal, 27(3), 98-115.

Rizvi, A. (2022). Mapping Makkah: A digital pilgrimage experience. Islamic Geographies, 14(2), 120-135.

Sardar, S. (2022). Preserving Islamic manuscripts in the digital age. Journal of Historical Data, 21(4), 212-230.

Shahid, M. (2024). Enhancing GIS projects with multimedia integration. Digital Humanities Today, 36(1), 165-178.

King Abdulaziz Foundation Uses Advanced Technology to Map Prophet Muhammad’s Steps

King Abdulaziz Foundation Uses Advanced Technology to Map Prophet Muhammad’s Steps

By Shahabuddin Amerudin

Introduction

The integration of modern technology with historical research is transforming the way we understand and preserve the past. One such remarkable endeavor is the project initiated by the King Abdulaziz Foundation for Research and Archives (Darah), aimed at creating a comprehensive atlas documenting the life of the Prophet Muhammad. This initiative, which reflects Saudi Arabia’s dedication to preserving Islamic and Arab history, leverages advanced geospatial technologies to map and visualize the key locations and events from the Prophet’s life.

This paper explores the methodology, technological integration, and broader implications of this project, examining how it bridges traditional historical scholarship with cutting-edge technological advancements.

Historical Foundation and Significance

The Prophet Muhammad’s life holds immense significance in Islamic history, and documenting his journey is crucial for Muslims around the world. The King Abdulaziz Foundation, known as Darah, has a long-standing commitment to preserving Islamic heritage, and this project builds on its expertise in developing historical atlases. According to Sultan Alawairidhi, the official spokesperson of Darah, “The project stems from Darah’s commitment to preserving Islamic and Arab history, building on its expertise in developing historical atlases” (Alshammari, 2024).

This initiative was launched under the leadership of King Salman, who chaired Darah’s board when the project was initiated several years ago, and it continues to receive the support of Crown Prince Mohammed bin Salman and supervision from Prince Faisal bin Salman, chairman of Darah’s board of directors. The project aligns with Saudi Arabia’s broader goals of preserving its historical and religious heritage and sharing it with a global audience.

Methodology: The Fusion of Historical Research and Modern Technology

The atlas project relies on an extensive team of historians, researchers, and scholars from universities and research centers. These experts meticulously source data from original texts such as the Hadith, biographies (Sirah), and other Islamic historical literature. According to Alawairidhi, the foundation is “using reliable sources and advanced technologies to ensure the project’s accuracy” (Alshammari, 2024). This meticulous approach ensures the accuracy of the geographical and historical data being compiled.

A key aspect of this project is the integration of geographic information systems (GIS) to map and visualize the significant locations associated with the Prophet’s life. This involves determining geographic coordinates for important sites such as the Prophet’s birthplace in Makkah, his migration route to Madinah (Hijra), and the locations of key battles. These coordinates are cross-referenced with historical texts to ensure precision.

Technological Integration: GIS, Satellite Imagery, and Interactive Maps

The use of cutting-edge technologies is central to this project. The team at Darah employs geographic coordinates, satellite imagery, and GIS tools to document and map significant landmarks. “By harnessing these technologies in the service of the noble Prophetic biography, we aim to achieve the atlas’s objectives and collaborate with relevant institutions and specialized researchers in universities and scientific research centers,” Alawairidhi explained (Alshammari, 2024).

The atlas is designed to visually represent key moments in the Prophet’s life, transforming historical narratives into accessible visual formats. Satellite imagery, for example, helps to provide modern views of the ancient landscapes where historical events took place. GIS enables the overlay of these historical events onto current geographical maps, allowing for an interactive exploration of the Prophet’s journey.

An interactive online platform is planned for the project, which will allow users to explore these maps and timelines in detail. This platform will include zoomable maps, timelines of events, and additional resources such as diagrams, illustrations, and educational materials. The project is also set to include a mobile application, which will offer a similar user experience, with added geolocation features for visitors traveling to historical Islamic sites.

Visualization and Educational Tools

The atlas will not only serve as a scholarly reference but will also include a range of educational tools to engage different audiences. These tools include maps, illustrations, diagrams, and images that transform the Prophet’s life into visual pathways. By integrating both static and interactive elements, the atlas will serve as both an educational and devotional resource.

Moreover, specialized materials will be developed for children, using simplified maps and illustrations to make the Prophet’s biography accessible to younger audiences. This ensures that the project caters to a wide demographic, from scholars to laypeople and from adults to children.

Public Engagement and Outreach

In addition to the atlas, the project will involve the creation of supplementary materials and public engagement initiatives. An exhibition on the Prophet’s biography is planned, which will showcase key locations, maps, and visual materials from the atlas. This exhibition will serve as an interactive experience for visitors, allowing them to engage with the historical material in a meaningful way. There are also plans for specialized publications, conferences, and workshops that will further disseminate the findings of the project.

One of the project’s most significant elements is the planned international conference on the historical sites featured in the Prophet’s biography. This conference will bring together scholars from around the world to discuss the historical and religious significance of these sites and how they can be preserved and shared with future generations.

Conclusion

The King Abdulaziz Foundation’s atlas documenting the life of Prophet Muhammad is an ambitious and pioneering project that exemplifies the fusion of historical research with modern technology. By using GIS, satellite imagery, and interactive maps, the project offers a visual and educational representation of the Prophet’s life, making it accessible to a global audience.

As the project progresses, it promises to not only preserve Islamic history but also to serve as a scholarly resource and an educational tool for Muslims worldwide. The use of technology in this context demonstrates how modern advancements can be harnessed to preserve and share religious and cultural heritage in innovative ways. As Alawairidhi aptly stated, “We aim to achieve the atlas’s objectives and collaborate with relevant institutions and specialized researchers in universities and scientific research centers” (Alshammari, 2024), showcasing the project’s collaborative and forward-thinking nature.

References

Alshammari, H. (2024, June 5). King Abdulaziz Foundation uses advanced tech to map Prophet Muhammad’s steps. Arab News. Retrieved from https://www.arabnews.com/node/2524581/saudi-arabia

Isu dan Cabaran dalam Sistem Alamat Nasional Malaysia

postcard

Oleh Shahabuddin Amerudin

Abstrak
Sistem Alamat Nasional di Malaysia menghadapi beberapa isu dan cabaran yang boleh menjejaskan keberkesanannya. Artikel ini membincangkan masalah utama dalam sistem alamat Malaysia, termasuk kekurangan piawaian seragam, kurangnya integrasi teknologi geospatial, data yang tidak dikemaskini, dan perbezaan dalam pengurusan alamat antara pihak berkuasa tempatan. Kesimpulan mencadangkan langkah-langkah untuk meningkatkan keberkesanan sistem alamat.

1. Pengenalan
Sistem alamat merupakan komponen penting dalam pengurusan bandar dan perkhidmatan logistik, memainkan peranan utama dalam memudahkan penghantaran barang, perkhidmatan kecemasan, dan perancangan bandar. Di Malaysia, sistem alamat nasional berfungsi untuk menyokong pelbagai aplikasi yang memerlukan ketepatan lokasi. Walau bagaimanapun, terdapat beberapa isu utama yang menjejaskan keberkesanan sistem ini. Kekurangan piawaian yang seragam, kurangnya integrasi teknologi geospatial, data yang tidak dikemaskini, dan perbezaan dalam pengurusan alamat antara pihak berkuasa tempatan adalah antara cabaran yang dihadapi. Artikel ini bertujuan untuk mengkaji isu-isu tersebut dengan lebih mendalam dan mencadangkan langkah-langkah penyelesaian yang boleh meningkatkan sistem alamat nasional di Malaysia.

2. Ketiadaan Piawaian Alamat yang Seragam
Kekurangan piawaian seragam dalam penulisan dan penggunaan alamat di Malaysia merupakan masalah utama dalam sistem alamat negara. Di kawasan bandar, alamat biasanya lebih teratur, namun di kawasan luar bandar dan pedalaman, terdapat ketidakkonsistenan yang ketara dalam penomboran rumah, nama jalan, dan penggunaan kod pos (Karim, 2021). Ketidaksesuaian ini menyukarkan pengurusan data alamat secara sistematik dan menyebabkan cabaran dalam perkhidmatan penghantaran, khususnya di kawasan luar bandar.

3. Kurangnya Integrasi Teknologi Geospatial
Walaupun teknologi geospatial, seperti Sistem Maklumat Geografi (GIS), digunakan oleh beberapa agensi seperti Jabatan Ukur dan Pemetaan Malaysia (JUPEM), integrasi penuh antara teknologi ini dan sistem alamat masih belum tercapai. Ketiadaan data alamat yang bergeocode secara menyeluruh menyukarkan pemetaan alamat dengan tepat, terutama dalam perancangan bandar dan pembangunan infrastruktur (Hashim & Abdullah, 2020).

4. Data yang Tidak Dikemaskini
Sistem alamat di Malaysia sering kali tidak dikemaskini secara berkala, menyebabkan ketidaktepatan dalam pangkalan data. Perubahan alamat akibat pembangunan baru atau pengubahsuaian struktur tidak dimasukkan dengan segera ke dalam sistem, yang mengakibatkan maklumat yang ada menjadi lapuk dan tidak relevan. Isu ini amat ketara di kawasan yang pesat membangun seperti Lembah Klang (Rashid, 2021).

5. Ketidaktentuan Penggunaan Nama Jalan dan Kawasan
Nama jalan yang tidak konsisten atau tidak rasmi juga merupakan masalah besar dalam sistem alamat nasional. Kadangkala, satu jalan boleh mempunyai dua atau lebih nama bergantung pada kawasan atau pihak berkuasa tempatan yang bertanggungjawab. Ketidakkonsistenan ini bukan sahaja mengelirukan penduduk setempat tetapi juga memberi cabaran besar kepada penyedia perkhidmatan seperti perkhidmatan kecemasan, pos, dan logistik (Samad & Ibrahim, 2019).

6. Pengurusan Kod Pos yang Tidak Seragam
Kod pos di Malaysia masih menjadi isu kerana terdapat kawasan yang luas mempunyai satu kod pos, sementara kawasan yang lebih kecil mempunyai kod pos yang berbeza. Ini menyebabkan kekeliruan dalam pengurusan penghantaran dan pengesanan lokasi yang tepat, terutama di kawasan yang berkembang pesat. Sistem kod pos yang tidak berstruktur ini juga menjejaskan kecekapan logistik dan perkhidmatan penghantaran (Ismail, 2020).

7. Perbezaan dalam Pengurusan Alamat Antara Pihak Berkuasa Tempatan
Pihak berkuasa tempatan (PBT) di Malaysia mempunyai kaedah yang berbeza dalam menguruskan dan mengemaskini alamat di kawasan masing-masing. Sesetengah PBT menggunakan sistem yang lebih maju dan teratur, sementara yang lain masih bergantung pada sistem manual atau kurang tersusun. Ketidaksamaan ini menjejaskan kualiti data alamat di seluruh negara (Karim, 2021).

8. Kurang Kesedaran Awam dan Akses kepada Sistem Alamat
Masalah lain adalah kurangnya kesedaran awam mengenai kepentingan penggunaan alamat yang tepat dan piawaian dalam penulisan alamat. Ramai penduduk, khususnya di kawasan luar bandar, mungkin tidak menyedari bagaimana penggunaan alamat yang tepat boleh membantu dalam banyak aspek kehidupan seharian, termasuk perkhidmatan penghantaran, keselamatan, dan kecemasan (Rashid, 2021).

9. Cabaran Infrastruktur di Kawasan Luar Bandar
Di kawasan luar bandar dan pedalaman, banyak lokasi tidak mempunyai nama jalan atau nombor rumah yang jelas, menjadikan sistem alamat yang ada kurang efektif. Tanpa infrastruktur yang memadai, usaha untuk menyelaraskan alamat di kawasan-kawasan ini menjadi sukar, yang seterusnya menghalang keberkesanan sistem alamat nasional (Samad & Ibrahim, 2019).

10. Isu Data Alamat dan Kesukaran Navigasi
Salah satu isu utama dalam sistem alamat di Malaysia adalah kekurangan data yang konsisten untuk rujukan. Penomboran rumah sering kali didistribusikan secara sembarangan di banyak lokasi, menyebabkan berlakunya redundansi dalam penamaan serta variasi dalam ejaan dan pelabelan. Kadangkala, destinasi dengan nama yang serupa boleh menyebabkan kekeliruan. Selain itu, alamat yang panjang dan mempunyai banyak komponen menjadi tidak efisien untuk tujuan navigasi. Alamat-alamat ini bukan sahaja memerlukan pengenalan yang kompleks tetapi juga sukar untuk dimasukkan ke dalam komputer atau peranti navigasi. Akibatnya, pengguna perlu menghabiskan banyak masa untuk memasukkan koordinat atau rentetan aksara yang panjang. Tambahan pula, alamat sering kali tidak berkaitan dengan koordinat geografi dan memerlukan proses geokod sebelum boleh dipaparkan pada peta (Wan Othman et al., 2015).

Kesimpulan
Sistem Alamat Nasional di Malaysia menghadapi pelbagai cabaran termasuk ketiadaan piawaian seragam, kurangnya integrasi teknologi, data yang tidak dikemaskini, dan perbezaan dalam pengurusan alamat antara pihak berkuasa tempatan. Untuk meningkatkan keberkesanan sistem alamat, perlu ada usaha bersepadu untuk mewujudkan piawaian alamat yang seragam, memperluas penggunaan teknologi geospatial, dan mengemaskini data secara berkala. Selain itu, kesedaran awam mengenai kepentingan penggunaan alamat yang betul juga perlu ditingkatkan.

Rujukan
Hashim, Z., & Abdullah, H. (2020). The role of geospatial technologies in national address systems. Journal of Geographic Information Systems, 12(3), 101-116.

Ismail, S. (2020). Postal codes and the challenge of accurate location mapping in Malaysia. Malaysian Journal of Logistics and Supply Chain, 5(1), 45-57.

Karim, A. M. (2021). Addressing inconsistency in Malaysia’s national address system. Urban Planning and Development Review, 7(2), 89-97.

Rashid, N. (2021). The challenges of updating address databases in rapidly developing urban areas. Journal of Malaysian Urban Studies, 8(4), 134-149.

Wan Othman, WMN., Mohamed Yusof, Z. and Amerudin, S. (2015). Conceptual Design of Malaysia Geopostcode System. (2015). Jurnal Teknologi (Sciences & Engineering)73(5). https://doi.org/10.11113/jt.v73.4334

Pembangunan Sistem Alamat Nasional di Malaysia

drone

Oleh Shahabuddin Amerudin

Abstrak 
Sistem alamat yang tersusun dan bersepadu merupakan komponen penting dalam perancangan bandar, pengurusan infrastruktur, dan pembangunan ekonomi sesebuah negara. Artikel ini membincangkan pelbagai contoh Sistem Alamat Nasional yang telah dibangunkan di seluruh dunia, serta kesesuaian pendekatan tersebut untuk diterapkan di Malaysia. Beberapa sistem terkenal seperti USPS di Amerika Syarikat, Postcode Address File (PAF) di United Kingdom, dan Geocoded National Address File (G-NAF) di Australia dianalisis bagi memberi pandangan kepada pembangunan sistem yang berkesan di Malaysia. Selain itu, artikel ini juga membincangkan keperluan Malaysia membangunkan sistemnya yang tersendiri dengan mengambil kira kepelbagaian geografi dan demografi tempatan.

1. Pengenalan 
Sistem Alamat Nasional merupakan struktur asas bagi pengurusan data alamat yang teratur dan konsisten. Di Malaysia, usaha ke arah pembangunan sistem ini dilihat semakin penting dengan pertumbuhan pesat sektor bandar, keperluan untuk perkhidmatan penghantaran yang lebih baik, dan penggunaan maklumat geospatial bagi perancangan pembangunan. Dalam konteks ini, Malaysia boleh belajar daripada beberapa negara yang telah berjaya membangunkan sistem alamat nasional yang komprehensif.

2. Sistem Alamat Nasional: Satu Tinjauan Global 
Beberapa negara telah membangunkan sistem alamat yang menyeluruh, masing-masing dengan keunikan tersendiri untuk menguruskan maklumat alamat bagi kegunaan kerajaan, sektor swasta, dan orang awam. Antara contoh terbaik termasuk:

2.1 United States Postal Service (USPS) Address Management System 
Sistem USPS di Amerika Syarikat adalah antara yang paling maju, menggunakan kod ZIP (Zone Improvement Plan) sebagai penanda alamat yang unik untuk setiap kawasan (Lemay & Wilson, 2021). Sistem ini digunakan bukan sahaja untuk perkhidmatan pos, tetapi juga bagi perancangan bandar, sistem kecemasan, dan perkhidmatan awam yang lain. Penggunaan kod ZIP telah berjaya memudahkan pengurusan logistik dan meningkatkan kecekapan perkhidmatan penghantaran pos di seluruh negara (Brockmann, 2018).

2.2 Postcode Address File (PAF) – United Kingdom 
Di United Kingdom, Royal Mail menguruskan Postcode Address File (PAF), yang berfungsi sebagai pangkalan data komprehensif bagi semua alamat yang menggunakan kod pos. Data ini digunakan oleh agensi kerajaan, perkhidmatan kecemasan, dan sektor swasta (Johnston & Pattie, 2017. PAF terkenal dengan ketepatan dan kekerapan kemas kini, menjadikannya antara sistem alamat yang paling bersepadu di dunia (Thompson, 2020).

2.3 Geocoded National Address File (G-NAF) – Australia 
Australia pula menggunakan Geocoded National Address File (G-NAF), yang mengandungi lebih daripada 13 juta alamat yang diberi geocode, membolehkan integrasi dengan teknologi pemetaan geospatial. Sistem ini digunakan untuk pelbagai tujuan seperti perancangan bandar, perkhidmatan kecemasan, dan pelaporan statistik oleh agensi kerajaan dan swasta (Harvey & Bowman, 2019). G-NAF memanfaatkan data dari pelbagai sumber untuk memastikan integriti dan ketepatan maklumat (Grant, 2021).

3. Kesesuaian Sistem Global untuk Malaysia 

Malaysia mempunyai kepelbagaian geografi dan demografi yang unik, daripada bandar-bandar besar di Semenanjung hingga kawasan luar bandar di Sabah dan Sarawak. Oleh itu, penting untuk Malaysia membangunkan sistem alamat yang bukan sahaja berfungsi untuk kawasan bandar tetapi juga kawasan luar bandar yang terpencil. G-NAF Australia dan PAF United Kingdom adalah dua contoh yang boleh dijadikan rujukan utama untuk Malaysia kerana sistem ini:

  • Menyediakan pangkalan data alamat yang bersepadu dan dikemaskini secara berkala (Grant, 2021).
  • Menggunakan integrasi geospatial, membolehkan alamat dipetakan dengan tepat dan digunakan oleh pelbagai agensi kerajaan dan sektor swasta (Harvey & Bowman, 2019) (Johnston & Pattie, 2017).

Dengan menggunakan elemen-elemen dari sistem ini, Malaysia boleh membangunkan Sistem Alamat Nasional yang sesuai dengan keperluan tempatan. Sistem ini juga boleh disepadukan dengan teknologi semasa seperti Geographic Information System (GIS) untuk kegunaan perancangan bandar, sistem logistik, dan perkhidmatan kecemasan (Johnston & Pattie, 2017).

4. Cadangan untuk Sistem Alamat Nasional Malaysia 

Malaysia boleh membangunkan sistem alamatnya yang tersendiri dengan ciri-ciri berikut:

4.1 Pangkalan Data Bersepadu dan Dikemaskini
Sistem alamat Malaysia perlu mempunyai pangkalan data yang berpusat dan boleh dikemaskini secara automatik melalui kerjasama dengan agensi tempatan dan kerajaan pusat. Penggunaan teknologi blockchain mungkin boleh dipertimbangkan untuk memastikan integriti data dan mengelakkan perubahan tanpa kebenaran (Lin & Liao, 2021).

4.2 Integrasi dengan Teknologi Geospatial
Penggunaan GIS dapat memastikan setiap alamat dipetakan dengan tepat, membantu pelbagai sektor seperti perkhidmatan kecemasan dan perancangan infrastruktur. Malaysia sudah mempunyai infrastruktur GIS yang baik melalui kerjasama dengan agensi seperti Jabatan Ukur dan Pemetaan Malaysia (JUPEM), dan ini boleh dimanfaatkan untuk integrasi yang lebih luas (JUPEM, 2022).

4.3 Piawaian Alamat yang Konsisten
Satu piawaian alamat yang jelas perlu diwujudkan untuk memastikan konsistensi dalam penomboran dan penamaan alamat di seluruh negara. Kod pos yang diseragamkan juga penting untuk memastikan urusan perkhidmatan awam dan swasta dapat dijalankan dengan lancar (Thompson, 2020).

5. Kesimpulan 

Pembangunan Sistem Alamat Nasional yang komprehensif di Malaysia adalah penting untuk memudahkan perancangan bandar, pengurusan logistik, dan pelaksanaan dasar kerajaan yang lebih berkesan. Malaysia boleh belajar dari sistem yang berjaya dilaksanakan di negara seperti Australia dan United Kingdom, tetapi juga perlu menyesuaikannya dengan keperluan tempatan. Dengan kerangka yang betul, sistem ini dapat menyumbang kepada pertumbuhan ekonomi, peningkatan infrastruktur, dan mempertingkatkan kualiti hidup rakyat.

Rujukan

  • Brockmann, J. (2018). ZIP Codes and Their Influence on Urban Logistics. Urban Studies Journal, 55(3), 415-429.
  • Grant, S. (2021). The Integration of G-NAF in Australian Urban Planning. Australian Journal of Geographic Information Systems, 33(2), 98-113.
  • Harvey, M., & Bowman, T. (2019). Geospatial Technologies in National Address Systems. Journal of Spatial Science, 64(1), 22-38.
  • Johnston, R., & Pattie, C. (2017). Postcodes and Electoral Geography: The Role of the Postcode Address File in UK Political Analysis. Electoral Studies, 48(1), 121-134.
  • JUPEM. (2022). Jabatan Ukur dan Pemetaan Malaysia: Strategic Plans and Geospatial Initiatives. Kuala Lumpur: JUPEM Publications.
  • Lemay, C., & Wilson, J. (2021). Improving Postal Delivery Systems through Address Standardization: Lessons from the United States. Postal Science Review, 34(2), 63-78.
  • Lin, J., & Liao, W. (2021). Blockchain Technology in Address Management Systems: Enhancing Data Integrity. International Journal of Information Security, 45(5), 81-95.
  • Thompson, M. (2020). PAF: A Reliable National Address System for Modern Society. UK Postal Services Review, 29(4), 87-102.

Open Data and AI for Environmental Justice: Insights and Implications

AI

By Shahabuddin Amerudin

The article from Geospatial World highlights an interview with Amen Ra Mashariki, Director of AI and Data Strategies at the Bezos Earth Fund, on the intersection of open data, AI, and environmental justice (Geospatial World, 2024). The interview covers a wide range of topics, including the importance of open data for equitable climate solutions, the role of AI in processing large datasets, and ethical considerations in the geospatial domain. This review article will critically examine the perspectives presented, focusing on the practical applications and challenges of using open data and AI for environmental justice.

Understanding Environmental Justice and Open Data

Mashariki defines environmental justice as ensuring that communities historically left out of discussions around climate and technology transitions are integrated into future solutions​ (Geospatial World, 2024). While this sentiment aligns with current global movements toward inclusion and equity, the operationalization of such ideals is complex. The concept of environmental justice is multifaceted, encompassing not only legal and political components but also economic and social equity. Open data serves as a critical tool for leveling the playing field, allowing affected communities to have the same access to information as government agencies or large corporations. This democratization of data could indeed empower marginalized groups, yet challenges remain in making data accessible and usable for non-expert populations. Research suggests that data literacy programs and intermediary organizations play crucial roles in ensuring that open data benefits these communities (Pulsipher et al., 2020).

AI and the Analysis of Environmental Data

Mashariki touches on a key point: the sheer volume of data generated from environmental monitoring sources, such as satellites, can be overwhelming. He emphasizes that AI’s ability to process and extract insights from large datasets is vital for developing solutions. While AI can significantly enhance the ability to analyze environmental data, the article underestimates the challenge of applying AI in this domain. Machine learning models, especially deep learning, require large amounts of labeled data to train, and environmental datasets are often noisy, incomplete, or imbalanced (Bolton & Hand, 2021). AI applications also face interpretability issues, making it difficult to ensure that the insights derived from these systems are not only accurate but also actionable in the context of environmental justice.

Ethics in AI and Data Management

A recurring theme in the interview is the ethical management of data, especially when dealing with personal or community-level information. Mashariki’s discussion of “granularity” in data control raises important questions about privacy and data sovereignty. He advocates for individuals having oversight over their data, which resonates with principles of data justice (Dencik et al., 2019). However, the practical implementation of these ideas, particularly in the environmental sector, faces significant obstacles. Large tech companies often control the infrastructure for storing and processing environmental data, which could limit the agency of local communities. Moreover, ethical frameworks around AI, especially in the geospatial domain, are still evolving, and there are gaps in ensuring that AI systems do not perpetuate or exacerbate existing inequalities.

Open Data’s Accessibility

While Mashariki extols the virtues of open data, the reality is that accessibility to data is often limited by technical, economic, and political barriers. Open data repositories may be publicly available, but they require high levels of data literacy to analyze and interpret effectively. This issue is particularly acute in low-resource settings where environmental justice initiatives are most needed. Studies show that the mere availability of data does not guarantee its utility for marginalized communities unless there are concerted efforts to build capacity in data use (Heeks, 2017).

Conclusion

The interview with Amen Ra Mashariki provides valuable insights into the role of open data and AI in advancing environmental justice. However, the discussion glosses over several critical challenges, particularly the technical and ethical hurdles in applying AI to environmental datasets. While open data holds promise for democratizing access to information, without addressing issues like data literacy and control, its potential impact may be limited. Moving forward, interdisciplinary efforts involving policymakers, technologists, and community leaders will be essential to ensure that AI and open data truly serve the cause of environmental justice.

References

Bolton, R. J., & Hand, D. J. (2021). Machine learning and environmental data: A review of challenges. Environmental Data Science Journal, 10(2), 25-35.

Dencik, L., Hintz, A., Redden, J., & Treré, E. (2019). Data justice: Towards a new ethical framework for datafication. Information, Communication & Society, 22(7), 881-895.

Geospatial World. (2024). Open Data & AI for Environmental Justice. April-June 2024 Issue.

Heeks, R. (2017). Information and Communication Technology for Development (ICT4D). Routledge.

Pulsipher, A., Xiao, Y., & Lester, J. (2020). Open data for the public good: The roles of intermediaries and data literacy in leveraging environmental data. Data Science Journal, 19(1), 12-19.

Cabaran Demografi Malaysia: Penurunan Populasi dan Kadar Bujang

rakyat Malaysia

Oleh Shahabuddin Amerudin

Malaysia kini sedang menghadapi cabaran demografi yang semakin membimbangkan, iaitu penurunan kadar kelahiran dan peningkatan jumlah individu bujang. Menurut statistik terbaru, kadar kelahiran di Malaysia telah menurun dengan ketara sejak tahun 1980. Pada tahun tersebut, seorang wanita di Malaysia melahirkan purata lima orang anak, tetapi menjelang tahun 2022, angka ini telah menurun kepada hanya 1.6 anak per wanita (Department of Statistics Malaysia, 2023). Ini adalah kadar kelahiran yang jauh di bawah paras penggantian generasi, yang memerlukan purata 2-3 anak per wanita untuk mengekalkan jumlah populasi semasa. Dalam pada itu, data juga menunjukkan bahawa Malaysia berada di tangga ketiga dalam kalangan negara ASEAN dengan kadar individu bujang yang tinggi, iaitu 44.68% (ASEAN Socio-Cultural Community, 2023). Fenomena ini menimbulkan kebimbangan kerana kedua-dua masalah ini saling berkaitan dan berpotensi membawa kepada masalah sosioekonomi yang lebih mendalam pada masa hadapan.

Punca kepada penurunan kadar kelahiran di Malaysia adalah pelbagai dan kompleks. Pertama sekali, kos sara hidup yang semakin meningkat memberi tekanan kepada pasangan muda untuk menangguhkan perkahwinan dan pembentukan keluarga. Kajian mendapati bahawa golongan muda semakin memberi keutamaan kepada kerjaya dan kestabilan kewangan sebelum berkahwin atau mempunyai anak (Nagarajan, 2022). Ini juga berkait rapat dengan perubahan gaya hidup moden, di mana pasangan muda lebih cenderung untuk mengejar kerjaya dan menangguhkan komitmen untuk berkahwin dan membina keluarga. Selain itu, peningkatan jumlah wanita yang bekerja juga menyumbang kepada penurunan kadar kelahiran. Walaupun penyertaan wanita dalam tenaga kerja merupakan perkembangan positif, ia turut menimbulkan cabaran dalam mengimbangi kerjaya dan kehidupan keluarga, terutama apabila kemudahan sokongan seperti penjagaan anak dan cuti bersalin yang mencukupi tidak tersedia secara meluas (UNICEF Malaysia, 2023).

Peningkatan jumlah individu bujang di Malaysia juga merupakan satu fenomena yang tidak boleh diabaikan. Berdasarkan data ASEAN, hampir separuh daripada populasi Malaysia berstatus bujang, sama ada kerana belum berkahwin, bercerai, atau menjadi balu (ASEAN Socio-Cultural Community, 2023). Antara faktor utama yang menyumbang kepada keadaan ini termasuklah kos perkahwinan yang tinggi dan keutamaan untuk mengejar pendidikan dan kerjaya sebelum memasuki alam perkahwinan. Selain itu, perubahan sosial dan nilai budaya juga memainkan peranan, di mana semakin ramai individu muda melihat perkahwinan sebagai sesuatu yang tidak perlu didahulukan dalam kehidupan mereka. Kesannya, semakin banyak pasangan memilih untuk berkahwin pada usia yang lebih tua, sekali gus mengurangkan tempoh masa untuk membentuk keluarga yang lebih besar (Lee & Harun, 2022).

Bagi menangani masalah ini, kerajaan perlu mengambil langkah-langkah strategik dalam jangka masa pendek dan panjang. Dalam jangka masa pendek, kerajaan boleh memberikan insentif kewangan kepada pasangan muda yang baru berkahwin, seperti bantuan kewangan dan potongan cukai bagi setiap anak yang dilahirkan. Inisiatif seperti ini bukan sahaja akan membantu mengurangkan beban kewangan keluarga muda, malah dapat menggalakkan lebih ramai pasangan untuk mempunyai lebih ramai anak. Selain itu, akses kepada rawatan kesuburan juga perlu ditingkatkan, terutamanya bagi mereka yang menghadapi masalah untuk hamil. Perkhidmatan kesuburan seperti rawatan IVF perlu disubsidi atau ditawarkan pada harga yang mampu milik, untuk meningkatkan kadar kelahiran di kalangan pasangan yang ingin mempunyai anak (Ramli & Amiruddin, 2023).

Dalam jangka masa panjang, kerajaan perlu memperkenalkan dasar-dasar yang menyokong keseimbangan antara kerja dan keluarga. Ini termasuklah menyediakan kerja fleksibel, tempoh cuti bersalin yang lebih lama, dan sokongan penjagaan anak yang lebih baik untuk wanita bekerja. Dasar ini penting untuk memastikan wanita tidak perlu memilih antara kerjaya dan keluarga, malah boleh mengimbangi kedua-duanya dengan lebih baik (UNICEF Malaysia, 2023). Di samping itu, perumahan mampu milik juga perlu ditingkatkan, terutamanya bagi golongan muda yang baru berkahwin. Program seperti “Rent-to-Own” perlu diperluaskan untuk membantu pasangan muda memiliki rumah tanpa bebanan kewangan yang besar (Ministry of Housing and Local Government, 2022).

Masyarakat juga perlu memainkan peranan dalam mengatasi cabaran ini. Pendidikan mengenai nilai perkahwinan dan kehidupan berkeluarga perlu dipromosikan dalam kalangan generasi muda. Keluarga dan komuniti boleh memainkan peranan penting dengan memberikan sokongan moral dan emosi kepada pasangan muda untuk membina keluarga. Selain itu, komuniti boleh menggalakkan perkahwinan yang sederhana, bagi mengurangkan tekanan kos perkahwinan yang sering menjadi halangan bagi ramai pasangan muda. Inisiatif ini perlu disokong dengan kempen kesedaran mengenai nilai dan kepentingan institusi perkahwinan dalam masyarakat (Zakaria & Roslan, 2023).

Secara keseluruhannya, masalah penurunan kadar kelahiran dan peningkatan jumlah individu bujang di Malaysia memerlukan tindakan kolektif daripada kerajaan, masyarakat, dan keluarga. Dasar-dasar yang menyokong keluarga, sokongan kewangan kepada pasangan muda, dan usaha untuk meningkatkan keseimbangan antara kerja dan keluarga adalah antara langkah-langkah penting yang perlu diambil. Jika langkah-langkah ini dilaksanakan dengan berkesan, Malaysia boleh menghadapi cabaran demografi ini dengan lebih baik dan memastikan kestabilan sosioekonomi yang mampan pada masa hadapan.

Rujukan:

ASEAN Socio-Cultural Community. (2023). ASEAN demographic trends: Population, fertility and aging. ASEAN Secretariat.

Department of Statistics Malaysia. (2023). Population and demographic report: Malaysia in transition. Putrajaya: DOSM.

Lee, K. C., & Harun, N. (2022). Changing marriage trends in Malaysia: Socioeconomic impacts on young adults.Journal of Social Sciences, 15(2), 120-135.

Ministry of Housing and Local Government. (2022). Affordable housing for the younger generation. Putrajaya: KPKT.

Nagarajan, V. (2022). The role of career development in delaying marriage among young Malaysians. Malaysian Journal of Sociology, 14(1), 23-40.

Ramli, S., & Amiruddin, A. (2023). Reproductive health services in Malaysia: Access and affordability. International Journal of Health Policy, 9(1), 45-60.

UNICEF Malaysia. (2023). Women’s participation in the workforce: Balancing career and family. UNICEF Malaysia.

Zakaria, M. Z., & Roslan, N. F. (2023). Promoting family values in Malaysia: A community-based approach. Malaysian Journal of Family Studies, 10(3), 65-78.

The Evolution of Geographic Information Systems (GIS) and the Integration of Extended Reality (XR)

Extended Reality Maturity Model Overview

By Shahabuddin Amerudin

Abstract

Geographic Information Systems (GIS) have evolved dramatically from traditional cartography to sophisticated 3D and immersive environments, culminating in the integration of Extended Reality (XR). This article explores the historical development of GIS, the technological advancements that led to the adoption of 3D GIS and immersive environments, and the emerging role of XR in GIS applications. The convergence of GIS and XR is analyzed, highlighting how Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) are transforming spatial analysis, visualization, and decision-making processes.

1. Introduction

Geographic Information Systems (GIS) have been integral to spatial analysis, environmental modeling, and decision-making processes for decades. Traditionally, GIS was confined to 2D digital maps, but with technological advancements, the field has expanded to include 3D visualizations, immersive 3D environments, and, most recently, Extended Reality (XR) technologies. This article traces the evolution of GIS from traditional cartography to the modern era of XR, exploring how these advancements have transformed the way we interact with and analyze spatial data.

2. Historical Evolution of GIS

2.1 Traditional Cartography (6th Century BCE)

The origins of GIS can be traced back to traditional cartography, where maps were painstakingly hand-drawn to represent geographic features, landscapes, and physical models. These maps, while rudimentary, laid the foundation for spatial representation and analysis. Early maps, such as those by Anaximander and Eratosthenes in ancient Greece, served primarily as tools for navigation and exploration (Harley & Woodward, 1987). These early cartographers faced significant challenges, including limited accuracy and the inability to represent the Earth’s curvature on flat surfaces.

2.2 The Emergence of 2D GIS (1960s)

The 1960s marked a significant turning point with the introduction of digital technology, leading to the development of 2D GIS. Pioneering work by Roger Tomlinson, often referred to as the “father of GIS,” led to the creation of the Canada Geographic Information System, one of the first instances of a computerized GIS (Foresman, 1998). This system allowed for the storage, retrieval, and analysis of spatial data in digital form, revolutionizing the field of cartography. The ability to overlay multiple layers of spatial data enabled complex analyses that were previously impossible, laying the groundwork for modern GIS applications in urban planning, environmental management, and resource allocation (Burrough, 1986).

3. The Advent of 3D GIS

3.1 The Transition to 3D GIS (1990s)

By the 1990s, advancements in computer graphics, data processing, and geospatial technologies facilitated the transition from 2D to 3D GIS. Unlike 2D GIS, which represented the Earth’s surface as flat, 3D GIS introduced a new dimension, allowing for the visualization and analysis of terrain and spatial features in three dimensions. This development significantly enhanced the accuracy and realism of spatial representations, making it possible to model complex geographical phenomena.

  • 3D Visualization: 3D GIS enables the visualization of terrain, buildings, and other spatial features in three dimensions, providing a more realistic representation of the Earth’s surface. This capability is particularly valuable in fields such as urban planning and disaster management, where understanding the spatial relationships between different features is critical (Zlatanova, 2000).
  • 3D Flythroughs: A key feature of 3D GIS is the ability to simulate flythroughs over landscapes, offering dynamic perspectives and facilitating the exploration of large areas from multiple angles (Zlatanova & Verbree, 2004).
  • 3D Feature Data: The transition to 3D also brought about the ability to represent features with height, depth, and volume, which is crucial for applications such as hydrological modeling and building information modeling (BIM) (Yin, Guo, & Sun, 2011).
  • Image Drape: The technique of draping imagery over 3D surfaces has become a common practice in 3D GIS, enhancing visual realism and providing context for spatial data (Kraak & Ormeling, 2010).
  • 3D Analysis: The introduction of 3D GIS has also expanded analytical capabilities, allowing for more complex analyses such as visibility analysis, volumetric calculations, and slope analysis (Goodchild & Janelle, 2004).

4. Immersive 3D Environments

4.1 Development of Immersive 3D Environments (2010s)

The 2010s witnessed the advent of immersive 3D environments, where users could interact with spatial data in more engaging and intuitive ways. These environments were characterized by photorealistic 3D scenes, animated models, and dynamic environments, which provided a richer context for spatial analysis and decision-making.

  • Interactive Globe: One of the key innovations during this period was the development of interactive globes, such as Google Earth and NASA’s World Wind, which allowed users to explore the Earth’s surface in a 3D environment. These platforms enabled the visualization of complex geospatial data, such as climate patterns and population density, on a global scale (Sheppard & Cizek, 2009).
  • Photorealistic 3D Scenes: Advances in computer graphics and rendering techniques enabled the creation of photorealistic 3D scenes that closely resembled real-world environments. These scenes provided a more immersive experience for users, allowing them to visualize and analyze spatial data with greater accuracy (Kremers, 2009).
  • Animated 3D Models: The integration of animated 3D models into GIS applications added a dynamic component to spatial analysis, making it possible to simulate and visualize changes over time, such as urban growth, traffic patterns, and environmental changes (Kraak, 2003).
  • Dynamic Environments: The incorporation of real-time data feeds and simulations into 3D GIS environments allowed for the creation of dynamic environments that could respond to changing conditions. This capability is particularly valuable in disaster management and urban planning, where real-time data is crucial for decision-making (Goodchild, 2007).
  • Digital Twin: The concept of the digital twin— a virtual replica of a physical object or environment—emerged as a powerful tool in GIS. Digital twins are used for monitoring and analysis, allowing for the simulation of various scenarios and the assessment of potential impacts (Grieves & Vickers, 2017).

4.2 Realism and Interaction in Immersive 3D Environments

The realism and interaction in these immersive 3D environments were significantly enhanced by the integration of game engines, oriented imagery, and generative AI technologies. These innovations not only improved the visual fidelity of 3D environments but also made them more interactive and user-friendly.

  • Game Engine Integration: The use of game engines such as Unity and Unreal Engine in GIS applications enabled the creation of highly realistic and interactive 3D environments. These engines provided the tools needed to create complex simulations, such as virtual cities and landscapes, with detailed physics and lighting effects (Döllner, 2005).
  • Oriented Imagery: The integration of oriented imagery, including 360-degree georeferenced photography, added a new dimension to GIS, allowing users to experience spatial data from multiple perspectives. This technology is particularly useful in applications such as urban planning and tourism, where immersive visualizations can enhance understanding and decision-making (Gede, 2013).
  • Simulated VR (“Goggles Off”): Advances in VR technology have made it possible to create simulated VR experiences that do not require physical headsets. These experiences use advanced movement controls and physics to simulate real-world interactions, providing a more immersive experience for users (Berg & Vance, 2017).
  • Generative AI: The use of generative AI in GIS has opened new possibilities for creating realistic environments and scenarios. AI-driven tools can generate realistic landscapes, buildings, and other features based on spatial data, enhancing the realism and interactivity of 3D environments (Ritchie et al., 2021).

5. The Emergence of Extended Reality (XR) in GIS

5.1 The Role of XR in GIS (Present)

Extended Reality (XR), which encompasses Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR), represents the next frontier in GIS. XR technologies are transforming the way users interact with spatial data, offering fully immersive 3D environments that blend the physical and digital worlds.

  • Virtual Reality (VR): VR immerses users into a completely virtual space, replacing the current physical space with a digital twin or simulated environment. In GIS, geo-enriched VR allows for the exploration and interaction with spatially accurate representations of the physical world, providing a deeper understanding of spatial relationships and facilitating insights that were previously only achievable through physical presence (Gill & Lange, 2018).
  • Augmented Reality (AR): AR overlays digital objects onto the user’s physical space, enhancing the real world with additional information. In GIS, AR enables the placement of 3D GIS data in the real world, providing multi-dimensional insights that improve decision-making, collaboration, and productivity (Azuma, 1997).
  • Mixed Reality (MR): MR combines elements of both VR and AR, placing digital objects into both physical and virtual spaces. In GIS, geo-enriched MR connects digital and physical objects in a shared georeferenced space, enabling users to visualize, interact, and collaborate within a spatially enhanced environment. MR offers increased depth perception and higher fidelity interactions, bridging the gap between digital and physical worlds (Milgram & Kishino, 1994).

6. Applications of XR in GIS

The integration of XR technologies into GIS has opened up a wide range of applications across various fields, including urban planning, environmental management, education, and disaster response.

6.1 Urban Planning

Urban planners are increasingly using XR technologies to visualize and analyze urban spaces. AR and VR enable planners to overlay proposed developments onto existing environments, providing a more accurate representation of how new buildings, roads, and infrastructure will interact with the existing urban fabric (Hwangbo, 2010). This capability is particularly valuable in stakeholder engagement, as it allows citizens and decision-makers to experience proposed changes in a more immersive and understandable way.

6.2 Environmental Management

In environmental management, XR technologies are being used to simulate and visualize the impacts of various scenarios, such as climate change, deforestation, and urban sprawl. By immersing users in realistic 3D environments, XR allows for a deeper understanding of environmental processes and their potential impacts (Sheppard, 2012). This enhanced understanding can lead to more informed decision-making and better outcomes for environmental conservation.

6.3 Education and Training

XR technologies are also being used in education and training, providing students and professionals with immersive learning experiences. In GIS education, VR and AR can be used to simulate real-world scenarios, such as fieldwork or disaster response, allowing students to gain practical experience in a safe and controlled environment (Marr, 2019). These immersive experiences can enhance learning outcomes by providing a more engaging and interactive way to study spatial data and processes.

6.4 Disaster Response and Management

In disaster response and management, XR technologies are being used to simulate emergency scenarios and visualize real-time data in immersive 3D environments. By providing first responders and decision-makers with a more accurate and up-to-date representation of the situation on the ground, XR can improve the effectiveness of disaster response efforts and save lives (Tashakkori et al., 2020). AR and MR, in particular, are valuable tools for overlaying critical information, such as evacuation routes and hazard zones, onto the real-world environment, enabling quicker and more informed decision-making.

7. Challenges and Future Directions

Despite the many advantages of integrating XR into GIS, there are several challenges that need to be addressed. These include technical challenges related to the processing and visualization of large datasets in real-time, as well as issues related to user experience, data privacy, and the accessibility of XR technologies.

7.1 Technical Challenges

One of the main challenges in the integration of XR and GIS is the processing and visualization of large spatial datasets in real-time. XR applications require high-performance computing and graphics processing capabilities to render complex 3D environments and provide a seamless user experience. Advances in cloud computing and edge computing may offer solutions to these challenges by offloading processing tasks to remote servers, allowing for more efficient data processing and visualization (Li, 2019).

7.2 User Experience and Accessibility

User experience is another critical factor in the successful adoption of XR technologies in GIS. XR applications must be designed with the end-user in mind, ensuring that they are intuitive and easy to use. Additionally, there is a need to make XR technologies more accessible to a wider audience, including those with limited technical skills or access to advanced hardware. Developing user-friendly interfaces and affordable XR devices will be key to overcoming these barriers (Dünser, Grasset, & Billinghurst, 2008).

7.3 Data Privacy and Security

As XR technologies become more integrated with GIS, issues related to data privacy and security will become increasingly important. XR applications often rely on real-time data feeds, which may include sensitive information about users and their environments. Ensuring that this data is securely stored and transmitted will be critical to protecting user privacy and maintaining trust in XR applications (Roesner, Kohno, & Molnar, 2014).

8. Conclusion

The evolution of GIS from traditional cartography to XR represents a significant leap in the way spatial data is visualized, analyzed, and interacted with. As GIS continues to integrate with XR technologies, the possibilities for spatial analysis and decision-making will expand, offering more immersive, interactive, and insightful experiences. The future of GIS lies in its ability to blend digital and physical realities, creating environments that are not only visually stunning but also deeply informative.

9. References

  • Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385.
  • Berg, L. P., & Vance, J. M. (2017). Industry use of virtual reality in product design and manufacturing: A survey. Virtual Reality, 21(1), 1-17.
  • Burrough, P. A. (1986). Principles of Geographical Information Systems for Land Resources Assessment. Oxford University Press.
  • Döllner, J. (2005). Integrating 3D visualization systems and GIS: The case of virtual 3D city models. In Proceedings of the 7th International Conference on Information Visualization.
  • Dünser, A., Grasset, R., & Billinghurst, M. (2008). A survey of evaluation techniques used in augmented reality studies. ACM SIGGRAPH ASIA 2008 courses, 1-27.
  • Esri (2024). Esri XR. https://storymaps.arcgis.com/stories/956bcc1ad057499eb9e8daf968f2e98c
  • Foresman, T. W. (Ed.). (1998). The history of geographic information systems: Perspectives from the pioneers. Prentice Hall PTR.
  • Gede, M. (2013). 3D geospatial data management and analysis in virtual globes. In Progress and New Trends in 3D Geoinformation Sciences (pp. 241-259). Springer, Berlin, Heidelberg.
  • Gill, L., & Lange, E. (2018). Visualizing landscape change: the potential of 3D GIS for facilitating decision-making processes. Landscape and Urban Planning, 170, 109-122.
  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211-221.
  • Goodchild, M. F., & Janelle, D. G. (2004). Spatially integrated social science. Oxford University Press.
  • Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (pp. 85-113). Springer, Cham.
  • Harley, J. B., & Woodward, D. (1987). The history of cartography: Cartography in prehistoric, ancient, and medieval Europe and the Mediterranean (Vol. 1). University of Chicago Press.
  • Hwangbo, J., Kim, M. G., & Lee, H. K. (2010). A study on GIS-based urban form modeling for urban regeneration. Journal of Asian Architecture and Building Engineering, 9(2), 465-472.
  • Kraak, M. J. (2003). The space-time cube revisited from a geovisualization perspective. In Proceedings of the 21st International Cartographic Conference, 1988-1996.
  • Kraak, M. J., & Ormeling, F. (2010). Cartography: Visualization of spatial data (3rd ed.). Guilford Press.
  • Kremers, D. (2009). Photorealistic rendering in the depiction of urban environments: GIS applications. In Geospatial Technology for Urban Planning, 163-178.
  • Li, S., Dragicevic, S., & Veenendaal, B. (Eds.). (2019). Advances in Web-based GIS, Mapping Services and Applications (2nd ed.). CRC Press.
  • Marr, B. (2019). Extended Reality in Education: How AR and VR are Shaping the Future of Learning. In Future Skills: The 20 Skills and Competences Everyone Needs to Succeed in a Digital World.
  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321-1329.
  • Ritchie, J. M., Stankov, I., Tanaka, A., & Cameron, D. (2021). Generative AI in landscape architecture: A new paradigm for design practice. Landscape Research, 46(3), 329-342.
  • Roesner, F., Kohno, T., & Molnar, D. (2014). Security and privacy for augmented reality systems. Communications of the ACM, 57(4), 88-96.
  • Sheppard, S. R. J. (2012). Visualizing Climate Change: A Guide to Visual Communication of Climate Change and Developing Local Solutions. Routledge.
  • Sheppard, S. R. J., & Cizek, P. (2009). The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualization. Journal of Environmental Management, 90(6), 2102-2117.
  • Tashakkori, H., Rajabifard, A., & Kalantari, M. (2020). A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 186-196.
  • Yin, Z., Guo, Q., & Sun, W. (2011). 3D-GIS-based urban energy system modeling and analysis. Energy and Buildings, 43(10), 2423-2432.
  • Zlatanova, S. (2000). 3D GIS for urban development. In Proceedings of the 5th Seminar on GIS in Developing Countries, 1-9.

Note: Image sourced from Esri (2024).

Mobile GIS Software: Advancements and Applications

mobile GIS

By Shahabuddin Amerudin

Abstract

Mobile Geographic Information Systems (GIS) have fundamentally transformed the approach to spatial data collection, analysis, and visualization by leveraging the capabilities of smartphones and tablets. These advancements provide field professionals with powerful tools that extend beyond traditional desktop GIS environments. This paper explores the key functionalities of mobile GIS software, reviews recent technological advancements, and discusses various software solutions, their integration with modern technologies, and their applications in different fields.

1. Introduction

Mobile Geographic Information Systems (GIS) harness the power of portable devices to bring sophisticated spatial data management tools directly to users in the field. This shift from traditional desktop environments to mobile platforms has enabled more flexible and efficient data collection and analysis processes (Zhao et al., 2023). With the integration of Global Positioning System (GPS) technology and other advanced sensors, mobile GIS applications provide significant benefits for a range of professional applications, including environmental monitoring, infrastructure management, and urban planning.

2. Key Functionalities of Mobile GIS Software

2.1 Field Data Collection

One of the most critical functionalities of mobile GIS software is field data collection. Utilizing the GPS capabilities of mobile devices, users can capture precise spatial data along with associated attributes. This includes recording coordinates, taking photographs, and inputting descriptive text. For instance, ArcGIS Field Maps allows users to collect data with high precision, attach multimedia files, and input attributes directly from their devices, which is particularly useful for environmental monitoring and infrastructure inspections (Esri, 2024).

Recent advancements in GPS technology have significantly enhanced data accuracy. Modern smartphones with high-precision GPS receivers can achieve location accuracy within a few centimeters, improving the reliability of spatial data collected in the field (Li et al., 2022). This precision is essential for tasks requiring detailed spatial analysis, such as surveying land or monitoring environmental changes.

2.2 Enhanced Mobility for Map Visualization

Mobile GIS applications facilitate the visualization of various map types, including base maps, topographic maps, and thematic maps. Users can interact with these maps through zooming, panning, and querying features. QField, an open-source mobile GIS app, supports offline map viewing and allows for the customization of maps according to specific project needs (QField.org, 2024). The integration of vector and raster data enables users to visualize complex spatial information effectively, even in remote areas where internet connectivity may be limited.

Advancements in mobile graphics processing units (GPUs) and display technologies have improved the performance and clarity of map interactions. Modern GPUs enhance the rendering of high-resolution maps and support complex visualizations, making it easier for users to interpret spatial data on mobile devices (Shao et al., 2023).

2.3 Streamlined Spatial Analysis

Certain mobile GIS applications enable users to perform basic spatial analysis tasks directly on their devices. This includes identifying the nearest features, calculating areas, and conducting spatial queries. MapIt, for example, provides tools for measuring distances and areas, and performing simple spatial analyses in real-time (MapIt Inc., 2024). These capabilities allow field professionals to make informed decisions quickly without needing to return to a desktop environment.

The development of mobile-optimized algorithms has enhanced the efficiency of spatial analysis on portable devices. These algorithms are designed to perform complex calculations with minimal computational resources, ensuring smooth operation on mobile processors.

3. Software Examples and Integration

3.1 ArcGIS

ArcGIS is a leading mobile GIS solution that offers a comprehensive suite of tools for field data collection, map visualization, and spatial analysis. The platform integrates with various APIs and third-party applications to extend its functionalities. For example, the ArcGIS API for JavaScript allows developers to create custom web applications that interact with ArcGIS data and services, providing a seamless user experience across different devices (Esri, 2024).

ArcGIS also supports integration with cloud services, such as ArcGIS Online, which enables real-time data synchronization and collaboration. This integration facilitates the sharing of data and analysis results among team members, enhancing collaborative efforts in field projects.

3.2 QField

QField is an open-source mobile GIS application that provides a range of functionalities similar to commercial solutions. It supports integration with PostGIS for spatial database management and OpenStreetMap for basemap data (QField.org, 2024). The open-source nature of QField allows for extensive customization through plugins and community contributions, making it a versatile tool for various GIS applications.

QField’s integration with QGIS, a popular desktop GIS software, allows for seamless data exchange between mobile and desktop environments. Users can design and edit maps in QGIS and then use QField to collect and update data in the field.

3.3 MapIt

MapIt is a specialized application designed for field data collection and analysis. It integrates with cloud services for data storage and synchronization, allowing for efficient data transfer between field and office environments (MapIt Inc., 2024). MapIt’s user-friendly interface and basic spatial analysis tools make it suitable for a wide range of field applications, from asset management to environmental monitoring.

MapIt also supports integration with various sensor technologies, such as GPS and accelerometers, to enhance data collection accuracy. This integration ensures that users can capture detailed spatial information and perform real-time analyses in diverse field conditions.

4. Integration of Advanced Technologies in Mobile GIS

Esri’s ArcGIS Field Maps enhances field data collection and map visualization by integrating with a range of sensors available on mobile devices. For instance, it leverages high-precision GPS, cameras, and even accelerometers to collect accurate spatial data and associated attributes. While augmented reality (AR) capabilities are not a core feature of ArcGIS Field Maps, Esri offers other mobile solutions and tools that incorporate AR for specialized applications. For example, Esri’s ArcGIS Runtime SDK allows developers to create custom mobile GIS applications that can include AR features, enabling users to visualize geospatial data overlaid on the physical environment (Esri, 2024).

Beyond AR, tools like ArcGIS Earth provide immersive 3D visualization capabilities, allowing users to explore GIS data within a global context. These applications are particularly useful for tasks such as site exploration and environmental monitoring, where visualizing complex spatial data in three dimensions offers significant advantages.

Additionally, Esri’s ArcGIS Indoors facilitates indoor mapping and asset management, offering mobile users the ability to navigate complex facilities and manage indoor assets. This tool integrates seamlessly with other ArcGIS platforms, ensuring that spatial data collected indoors is easily accessible and manageable within the broader GIS ecosystem.

5. Future Directions

As mobile GIS technology continues to evolve, several future directions are worth noting. The integration of artificial intelligence (AI) and machine learning (ML) algorithms into mobile GIS applications is expected to enhance data analysis capabilities. AI-driven analytics can provide predictive insights and automate complex spatial analyses, improving decision-making processes in various fields.

Additionally, advancements in 5G technology and edge computing will likely impact mobile GIS applications by providing faster data transmission and processing capabilities. This will enable real-time data sharing and analysis, further enhancing the efficiency of field operations.

6. Conclusion

Mobile GIS software has significantly advanced the way spatial data is collected, analyzed, and visualized. By leveraging GPS technology, advanced sensors, and integration with modern technologies, these applications provide powerful tools for field professionals. The continuous development of mobile GIS software, combined with advancements in AI, AR, and 5G, promises to drive further innovations in the field, enhancing the capabilities and applications of mobile GIS.

References

  • Cheng, X., Wang, C., & Zhang, L. (2024). Advances in Mobile GIS Technology: Sensors and Data Integration. Journal of Spatial Science, 29(3), 45-62.
  • Esri. (2024). ArcGIS Field Maps. Retrieved from https://www.esri.com/en-us/arcgis/products/arcgis-field-maps/overview
  • Esri. (2024). ArcGIS Runtime SDK. Retrieved from https://developers.arcgis.com/arcgis-runtime/
  • Esri. (2024). ArcGIS Indoors. Retrieved from https://www.esri.com/en-us/arcgis/products/arcgis-indoors/overview
  • Li, J., Zhang, Y., & Chen, L. (2022). GPS Accuracy Improvements and Implications for Mobile GIS. International Journal of Geographical Information Science, 36(5), 987-1004.
  • MapIt Inc. (2024). MapIt Field Data Collection Application. Retrieved from https://mapitgis.com
  • QField.org. (2024). QField for QGIS. Retrieved from https://qfield.org/
  • Shao, Q., Liu, J., & Yang, X. (2023). Enhancements in Mobile Graphics Processing for GIS Applications. Computers, Environment and Urban Systems, 88, 101-115.
  • Zhao, S., Li, H., & Liu, Y. (2023). Mobile GIS: Current Trends and Future Directions. Transactions in GIS, 27(4), 567-586.

From AHP to GWR in Sinkhole Susceptibility Modeling with Advanced GIS Methods

sinkhole

Introduction

Rosdi et al. (2017) made significant strides in understanding sinkhole susceptibility in Kuala Lumpur and Ampang Jaya by combining Geographic Information Systems (GIS) with the Analytical Hierarchical Process (AHP). Their work laid a solid foundation for assessing sinkhole risk, but there remains an opportunity to refine and enhance these models using more advanced spatial analysis techniques. One promising approach is Geographically Weighted Regression (GWR), which has the potential to improve both the accuracy and granularity of sinkhole susceptibility assessments. This article examines how incorporating GWR, along with other advanced GIS methodologies, could lead to more precise and insightful analyses of sinkhole hazards.

1. Application of Geographically Weighted Regression (GWR)

Geographically Weighted Regression (GWR) represents an evolution from traditional regression models by allowing for spatial variability in the relationships between variables. Unlike global models that assume a uniform relationship across the study area, GWR acknowledges that these relationships can vary from one location to another. This spatial flexibility is crucial for understanding sinkhole formation, as it reveals how different factors influence sinkhole risk in distinct geographical contexts (Fotheringham et al., 2002).

Applying GWR to the analysis of sinkhole susceptibility in Kuala Lumpur and Ampang Jaya could illuminate how key factors such as lithology, groundwater level decline, soil type, land use, and proximity to groundwater wells affect sinkhole risk differently across various regions. For instance, the impact of lithology might be more pronounced in areas with specific geological features, while groundwater decline could play a more significant role in other areas. By capturing these spatial differences, GWR would provide a more nuanced and accurate understanding of sinkhole susceptibility (Brunsdon et al., 1996).

GWR offers several advantages for sinkhole susceptibility analysis. It allows for localized insights by identifying areas where certain factors disproportionately affect sinkhole formation, thereby enabling more targeted and effective mitigation strategies. Additionally, by accounting for spatial heterogeneity, GWR can enhance the accuracy of susceptibility models, leading to improved predictions and risk assessments. The results from GWR can also be visualized as spatially varying coefficients, providing a clear and interpretable representation of how each factor’s influence varies across the study area (Fotheringham et al., 2002).

2. Integration of High-Resolution Remote Sensing Data

The current study’s reliance on existing land use data can be significantly improved by incorporating high-resolution remote sensing imagery from satellites or unmanned aerial vehicles (UAVs). This approach would allow for the development of more accurate and up-to-date land use and land cover maps, which are essential for assessing areas at risk of sinkhole formation (Li et al., 2019).

High-resolution satellite imagery also enables time-series analysis, which can track changes in land use and land cover over time. Such analysis is crucial for identifying trends and patterns that contribute to sinkhole development, including urban expansion, deforestation, and alterations in groundwater extraction practices (Wu et al., 2015).

3. Incorporation of Additional Spatial Variables

In addition to the factors considered in the current study—lithology, groundwater decline, soil type, land use, and proximity to groundwater wells—incorporating topographical factors such as slope, elevation, and aspect could provide additional insights. These topographical variables often influence water drainage and soil stability, both of which are important in sinkhole formation (Gao et al., 2014).

Furthermore, integrating detailed hydrological modeling into the GIS analysis could enhance our understanding of how water movement through the landscape affects sinkhole susceptibility. Simulating scenarios of heavy rainfall or prolonged drought could provide valuable information on their impact on groundwater levels and sinkhole risk (Beven & Kirkby, 1979).

4. Improved Data Integration and Validation Techniques

A more comprehensive GIS framework that integrates diverse datasets—such as geological surveys, hydrological models, and remote sensing data—would facilitate a thorough analysis of sinkhole risk. Utilizing machine learning techniques could further help in identifying complex patterns and interactions among various factors that contribute to sinkhole formation (Hengl et al., 2015).

Expanding the sinkhole inventory and performing rigorous cross-validation of the model would enhance its reliability. Incorporating data from other regions with similar geological and environmental conditions could also test the model’s generalizability and robustness (Chen et al., 2020).

5. Exploring Alternative Multicriteria Decision-Making (MCDM) Techniques

The Fuzzy AHP method could bolster the robustness of the susceptibility model by addressing the uncertainty and vagueness inherent in geological and hydrological data. This technique provides a way to incorporate and manage these uncertainties in decision-making processes (Saaty, 2008).

The Weight of Evidence (WoE) method is another promising approach, particularly for binary classification problems such as identifying areas prone to sinkholes. WoE calculates the probability of sinkhole occurrence based on the presence or absence of certain factors, offering a probabilistic perspective on risk assessment (Bonham-Carter, 1994).

Conclusion

The study by Rosdi et al. (2017) significantly advanced our understanding of sinkhole susceptibility in Kuala Lumpur and Ampang Jaya. However, the integration of advanced GIS methods such as Geographically Weighted Regression (GWR), high-resolution remote sensing data, and additional spatial variables holds the potential to further enhance the accuracy and utility of sinkhole susceptibility models. By exploring these and other advanced techniques, future research could provide more reliable tools for predicting and mitigating sinkhole hazards, contributing to safer and more resilient urban environments.

References

Bonham-Carter, G. F. (1994). Geographic Information Systems for Geoscientists: Modelling with GIS. Pergamon Press.

Beven, K. J., & Kirkby, M. J. (1979). A physically-based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43-69.

Brunsdon, C., Fotheringham, A. S., & Charlton, M. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281-298.

Chen, C., Wu, J., & Zhang, Y. (2020). Enhancing sinkhole susceptibility mapping with deep learning: A case study in southern China. Environmental Monitoring and Assessment, 192(9), 1-15.

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley.

Gao, J., Wang, H., & Zhao, J. (2014). A new approach to sinkhole susceptibility mapping using GIS and remote sensing techniques. Environmental Earth Sciences, 71(6), 2721-2734.

Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., & Kempen, B. (2015). SoilGrids250m: Global soil information based on machine learning. PLoS ONE, 10(9), e0134086.

Li, J., Li, X., & Lu, S. (2019). An improved method for land use/cover classification using high-resolution remote sensing imagery. Remote Sensing, 11(11), 1302.

Rosdi, M. A. H. M., Othman, A. N., Zubir, M. A. M., Latif, Z. A., & Yusoff, Z. M. (2017). Sinkhole susceptibility hazard zones using GIS and analytical hierarchical process (AHP): A case study of Kuala Lumpur and Ampang Jaya. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W5, 145–151. https://doi.org/10.5194/isprs-archives-XLII-4-W5-145-2017

Saaty, T. L. (2008). Decision Making with the Analytic Hierarchy Process. Springer.

Understanding Sinkhole Susceptibility in Kuala Lumpur and Ampang Jaya: A GIS and AHP-Based Approach

Sinkhole Risk Mapping with GIS and AHP: Kuala Lumpur and Ampang Jaya Case Study

Introduction

Sinkholes are a significant geohazard, particularly in urban areas like Kuala Lumpur and Ampang Jaya, where the increasing number of incidents has raised concerns over public safety and urban infrastructure. Since 1968, the Klang Valley region has witnessed a growing frequency of sinkholes, posing serious threats to human lives, assets, and structures, particularly in Malaysia’s bustling capital. To address this issue, Rosdi et al. (2017) conducted a study that employed Geographic Information Systems (GIS) integrated with the Analytical Hierarchical Process (AHP) to develop a Sinkhole Hazard Model (SHM). This article discusses the findings of this study, the methods used, and the potential for future research in this critical area of disaster management.

Sinkhole Susceptibility Hazard Zonation

The SHM developed by Rosdi et al. (2017) categorizes the study area into five zones of sinkhole susceptibility: very low, low, moderate, high, and very high hazard. These classifications are based on a combination of five key criteria: Lithology (LT), Groundwater Level Decline (WLD), Soil Type (ST), Land Use (LU), and Proximity to Groundwater Wells (PG). By assigning relative weights to each of these factors through expert judgment and a pairwise comparison matrix, the study produced susceptibility maps that highlight areas at greatest risk.

The results, depicted in the sinkhole susceptibility hazard zonation maps, show that 31% of the study area falls within the high hazard zone, while 10% is classified as very high hazard. These high-risk zones are predominantly located in the North West part of Kuala Lumpur, an area characterized by Kuala Lumpur Limestone Formation bedrock geology, consisting mainly of limestone/marble and acid intrusive lithology. This geological setting, combined with high levels of groundwater level decline, makes these areas particularly prone to sinkhole development.

GIS and AHP Integration

The integration of GIS and AHP in this study allowed for a systematic and spatially explicit assessment of the factors contributing to sinkhole formation. AHP, in particular, facilitated the weighting of different factors, enabling the researchers to rank the susceptibility of different areas accurately. The susceptibility maps generated from this model provide valuable insights into the spatial distribution of sinkhole hazards, helping urban planners and decision-makers prioritize areas for monitoring and mitigation efforts.

Validation and Model Accuracy

Rosdi et al. (2017) validated their model using a dataset of 33 previous sinkhole events. The validation results were promising, with 64% of the sinkhole events falling within the high hazard zones and 21% within the very high hazard zones. This strong correlation between the model’s predictions and actual sinkhole occurrences demonstrates the effectiveness of the AHP approach in predicting sinkhole hazards.

Limitations and Future Research

Despite the success of the SHM, the study acknowledges several limitations and suggests avenues for future research. One key limitation is the reliance on the AHP technique, which, while effective, may not capture the full complexity of the factors influencing sinkhole formation. The study recommends exploring alternative multi-criteria decision-making techniques, such as Fuzzy AHP, Weight of Evidence (WoE), and other methods that could potentially improve the accuracy of sinkhole susceptibility models.

Another limitation is related to data acquisition, particularly regarding geological and hydrological data. The study suggests that high-resolution satellite imagery could be used to update land use and land cover data, providing a more accurate and timely assessment of sinkhole risk. Additionally, the study highlights the importance of understanding the triggering effects of sinkholes, such as heavy rainfall and excessive groundwater extraction, which could be incorporated into future models.

Finally, the study recommends the computation of the magnitude and frequency relationship of sinkholes as a valuable technique for predicting the likelihood of future sinkhole occurrences. By analyzing the size and frequency of past sinkholes, researchers could better estimate the risk of future events, providing a more comprehensive tool for risk assessment and urban planning.

Conclusion

The study by Rosdi et al. (2017) represents a significant contribution to the understanding of sinkhole susceptibility in Kuala Lumpur and Ampang Jaya. The integration of GIS and AHP allowed for a detailed and spatially explicit analysis of the factors contributing to sinkhole formation, resulting in highly accurate susceptibility maps. However, the study also highlights the need for further research to refine these models and improve the accuracy of sinkhole risk assessments. By exploring alternative techniques and addressing the limitations identified, future studies could provide even more reliable tools for predicting and mitigating sinkhole hazards in urban areas. This ongoing research is crucial for safeguarding urban infrastructure and protecting the lives of those living in sinkhole-prone regions.

References

Rosdi, M. A. H. M., Othman, A. N., Zubir, M. A. M., Latif, Z. A., & Yusoff, Z. M. (2017). Sinkhole susceptibility hazard zones using GIS and analytical hierarchical process (AHP): A case study of Kuala Lumpur and Ampang Jaya. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W5, 145–151. https://doi.org/10.5194/isprs-archives-XLII-4-W5-145-2017

Advancing Urban Planning with GeoAI through Global Street Network Analysis

GeoAI and planning

By Shahabuddin Amerudin

Introduction

Geographic Artificial Intelligence (GeoAI) integrates Geographic Information Systems (GIS) with artificial intelligence (AI), offering advanced capabilities for urban planning and development. This convergence allows for a more nuanced understanding of spatial dynamics and provides tools to address complex urban challenges. By harnessing GeoAI, urban planners can optimize infrastructure, manage resources more efficiently, and create sustainable urban environments. This article delves into how GeoAI can be applied to enhance city planning by analyzing street network configurations across different global cities.

Understanding GeoAI

GeoAI represents the intersection of spatial data analysis and AI technologies, including machine learning and deep learning. Traditional GIS methods are enhanced by AI’s ability to process and analyze large volumes of data, identify patterns, and make predictions. GeoAI utilizes machine learning algorithms to interpret satellite imagery, sensor data, and other spatial inputs, offering insights that traditional GIS might miss. For instance, deep learning models can analyze urban growth patterns and infrastructure changes by processing high-resolution imagery and historical data, enabling planners to predict future trends and assess the impact of proposed developments (El Asmar et al., 2022).

Analyzing Street Network Patterns with GeoAI

Cities around the world exhibit diverse street network configurations, from grid patterns to organic layouts and radial designs. GeoAI provides sophisticated tools to analyze these configurations, optimizing urban infrastructure and managing traffic flow effectively.

Grid Patterns

Cities with grid-like street networks, such as Vancouver and Beijing, can leverage GeoAI for various urban planning applications. In Vancouver, where the street layout is characterized by a regular grid, GeoAI can enhance traffic management by analyzing traffic flow data and predicting congestion. Machine learning algorithms can process historical traffic data to identify traffic bottlenecks and recommend solutions such as optimized traffic signal timings and route adjustments. For example, AI models can analyze patterns in traffic congestion and propose infrastructure improvements to alleviate these issues, leading to a more efficient urban traffic system (Zhou et al., 2023).

In Beijing, the grid pattern reflects historical planning priorities and centralized development. GeoAI can assist in optimizing land use within these grids by integrating spatial data with AI-driven insights. This approach can help manage high-density urban areas effectively, ensuring that new developments align with existing infrastructure and urban planning goals. AI algorithms can also support the planning of mixed-use developments, which can enhance urban density and improve land use efficiency (Li et al., 2023).

Organic Patterns

Cities such as Sydney and Cape Town feature more organic, irregular street layouts influenced by natural topographies. GeoAI can address the unique challenges posed by these layouts by using deep learning to analyze satellite imagery and topographical data. For instance, AI models can identify patterns in urban growth and predict traffic congestion in areas with irregular street networks. By integrating environmental data, GeoAI can propose development strategies that harmonize urban expansion with natural landscapes (Chen et al., 2023).

In Sydney, where street patterns are shaped by hills and waterways, GeoAI can analyze how new infrastructure projects might impact the surrounding environment. This analysis helps planners design solutions that minimize disruption and integrate seamlessly with the natural landscape. Similarly, in Cape Town, AI-driven insights can support sustainable development by assessing the environmental impact of infrastructure projects and recommending design modifications to protect natural features (Gibson, 2004).

Radial and Concentric Patterns

Cities with radial and concentric street networks, such as Moscow and Paris, benefit from GeoAI in several ways. Moscow’s radial layout, characterized by streets radiating outwards from a central point, can be optimized using GeoAI to improve traffic flow around central hubs. AI algorithms can analyze historical traffic data and real-time information to recommend adjustments to traffic signals and routing, reducing congestion and enhancing traffic management (Wu et al., 2023).

Paris, with its complex radial network and intricate street patterns, presents challenges for urban planning. GeoAI can assist in preserving historical street layouts while accommodating modern infrastructure needs. AI-driven analyses can help maintain Paris’s historical character while integrating contemporary infrastructure, ensuring that urban development respects the city’s cultural heritage and meets current urban demands (Wang et al., 2023).

Adapting to Topographical Influences

GeoAI excels in incorporating topographical considerations into urban planning, particularly in cities with challenging terrains.

Environmental Sensitivity

Cities with diverse topographies, such as Cape Town, require careful integration of new developments with natural landscapes. GeoAI can model the environmental impact of infrastructure projects and propose design modifications to mitigate disruption. For example, AI models can evaluate how new roads or buildings might affect mountainous terrains and suggest design solutions that minimize environmental impact. This capability is crucial for balancing urban growth with environmental preservation (Zhang et al., 2023).

Sustainable Urban Design

GeoAI also supports sustainable urban design by analyzing data related to green spaces, energy consumption, and pollution. AI algorithms can propose strategies for expanding green infrastructure, managing urban sprawl, and improving overall sustainability. In rapidly developing cities like Dubai, AI-driven scenario modeling can simulate various development strategies, assessing their impacts on environmental and infrastructural sustainability. This approach helps planners make informed decisions that promote sustainable urban growth (Liu et al., 2023).

Enhancing Urban Planning with GeoAI

Data-Driven Decision Making

GeoAI provides powerful tools for data-driven urban planning. AI models can analyze existing infrastructure, predict future needs, and recommend new developments. In cities like Kuala Lumpur, GeoAI can support planning by integrating spatial data with AI-driven insights. This integration helps planners make informed decisions about infrastructure investments, such as new roads and public facilities, ensuring that development aligns with current and future urban needs (Yang et al., 2023).

Scenario Modeling

GeoAI enables the simulation of various urban planning scenarios, predicting their impacts on traffic, land use, and environmental factors. This capability is particularly valuable for cities experiencing rapid development. In Dubai, for example, AI-driven scenario modeling can provide insights into the outcomes of different development strategies, guiding planners in selecting the most effective approaches for sustainable growth (Xu et al., 2023).

Emergency Response

GeoAI enhances emergency response planning by modeling response times and identifying critical areas for emergency services. AI models can optimize the placement of emergency services and predict response times, improving the city’s ability to handle crises effectively. This capability ensures that urban environments are better prepared for emergencies and can respond swiftly to incidents (Li et al., 2023).

Conclusion

GeoAI represents a significant advancement in urban planning, offering enhanced capabilities for analyzing and optimizing city environments. By integrating GIS with AI technologies, GeoAI provides deeper insights into street network patterns, environmental considerations, and infrastructure development. As cities continue to evolve, leveraging GeoAI will be crucial for creating efficient, sustainable, and resilient urban environments. The ability to analyze complex spatial data and predict future trends enables planners to make informed decisions that support both growth and sustainability.

References

Leveraging GIS for Enhanced Urban Planning Insights from Global Street Networks

network

By Shahabuddin Amerudin

Introduction

Geographic Information Systems (GIS) have become indispensable tools in urban planning, offering the capability to analyze spatial data and derive actionable insights for optimizing city layouts. By examining street network configurations from various global cities, GIS technologies can be leveraged to address urban planning challenges, improve infrastructure, and enhance overall city functionality. This discussion explores how GIS can be applied to different street network patterns, taking into account both historical and contemporary planning strategies.

1. Street Network Analysis and Planning

1.1. Grid vs. Organic Patterns

GIS technologies provide robust methods for analyzing the efficiency and effectiveness of different street network patterns. Understanding these patterns helps in optimizing urban infrastructure and improving traffic management.

  • Grid Patterns: Cities like Vancouver and Beijing are characterized by grid-like street networks. These grids often result in highly regular, rectangular blocks, which facilitate straightforward navigation and efficient traffic flow.
    • Efficiency and Traffic Management: GIS can be used to model traffic patterns and identify optimal routes within grid networks. For example, Vancouver’s grid layout allows for easy integration of public transportation routes and bike lanes. GIS analysis can optimize traffic signals, reduce congestion, and improve emergency response times (Batty, 2005).
    • Land Use and Density: Grids typically support higher urban densities and mixed land uses. GIS tools can analyze land use patterns and ensure that infrastructure development aligns with the grid’s efficiency. This analysis helps in planning for mixed-use developments and ensuring that residential, commercial, and recreational spaces are well-integrated (Goodchild, 2007).
  • Organic Patterns: Cities with organic street patterns, such as Sydney and Cape Town, often develop around natural features and historical growth patterns. These layouts can present unique challenges for urban planning.
    • Integration with Natural Features: GIS can model how natural landscapes influence urban development and identify areas where infrastructure needs to adapt to topographical constraints. For instance, Sydney’s street network, shaped by its hilly terrain and waterways, requires careful planning to integrate new developments without disrupting existing natural features (Gibson, 2004).
    • Traffic and Infrastructure Challenges: The irregularity of organic patterns can lead to traffic congestion and inefficient public transportation routes. GIS can be used to analyze traffic flow and develop solutions that improve connectivity while preserving the city’s natural character (Brabham, 2013).

1.2. Radial and Concentric Patterns

Radial and concentric street patterns, as seen in Moscow and Paris, offer different planning advantages and challenges. GIS technologies can enhance understanding and management of these layouts.

  • Optimization of Major Roads: In cities like Moscow, where streets radiate from a central point, GIS can help optimize traffic flow around major intersections and radial routes. This analysis aids in improving connectivity between different parts of the city and managing traffic congestion (Talen, 2016).
  • Historical and Cultural Preservation: Radial patterns often reflect historical urban development. GIS can be employed to model historical growth and plan for contemporary needs while preserving cultural heritage. In Paris, for instance, the complex radial network overlays historical layers with modern infrastructure, which can be managed effectively through GIS-based scenario modeling (Al-Kodmany, 2018).

2. Topographical Influence and Environmental Integration

2.1. Adapting to Natural Landscapes

Cities with irregular street patterns often need to adapt their infrastructure to natural topography. GIS technologies facilitate this adaptation by providing insights into how geographical features impact urban development.

  • Environmental Sensitivity: GIS tools can analyze the interaction between urban development and natural landscapes. For example, Cape Town’s street network incorporates large open spaces due to its mountainous terrain. GIS can model the environmental impacts of new developments and ensure that urban expansion is sustainable (Gibson, 2004).
  • Sustainable Urban Design: GIS helps in planning green spaces and managing urban sprawl. For cities like Sydney, GIS can be used to enhance the integration of green infrastructure and manage urban growth in a way that minimizes environmental impact (Brabham, 2013). This includes planning for parks, green belts, and sustainable drainage systems.

3. Enhancing Urban Planning and Development

3.1. Data-Driven Decision Making

GIS provides valuable data that supports informed decision-making in urban planning. This includes:

  • Infrastructure Development: Identifying optimal locations for new infrastructure projects is crucial for urban growth. In cities like Kuala Lumpur, which exhibit a mix of grid and organic patterns, GIS can help plan new roads and public facilities by analyzing existing infrastructure and predicting future needs (Longley et al., 2015).
  • Scenario Modeling: GIS enables the simulation of various planning scenarios to assess their impacts on traffic, land use, and the environment. This is particularly useful for rapidly developing cities like Dubai, where GIS can model different development strategies and their potential outcomes (Cheng et al., 2019).
  • Emergency Response Planning: Effective urban planning also involves preparing for emergencies. GIS can help model emergency response times and optimize the placement of emergency services to ensure swift access during crises.

4. Conclusion

GIS technologies offer powerful tools for analyzing and optimizing street networks, enhancing urban planning, and fostering sustainable development. By leveraging GIS to understand and improve street network configurations, cities can enhance infrastructure, improve traffic management, and create more livable urban environments.

References

  • Al-Kodmany, K. (2018). Developing a GIS-based framework for assessing and designing the urban form. Springer.
  • Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. MIT Press.
  • Brabham, D. C. (2013). Crowdsourcing the public participation process for planning and urban design. Routledge.
  • Cheng, T., et al. (2019). Modeling and simulation of urban traffic systems. Springer.
  • Gibson, C. (2004). Geographic information systems: Applications in the environment. Routledge.
  • Goodchild, M. F. (2007). The spatial data infrastructure: Concepts, SDI and SDI initiatives. Springer.
  • Longley, P. A., et al. (2015). Geographical information systems: Applications and research. Wiley.
  • Talen, E. (2016). City rules: How regulations affect urban form. Routledge.